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ABSTRACT t 0

Pronounced spatial acoustic interference patterns versus horizon-
tal range were observed near the deep ocean bottom from a 220-Hz CW
point source also located near the bottom. This is a result of the
direct water wave field interacting with a strongly reflected field from
the ocean sediments. If the bottom structures are horizontally strat- 0
ified media, the reflected field can be expressed by the Sommerfeld
integral whose integrand is weighted by a total plane wave reflection
coefficient.

In this thesis the reflected fields are analytically evaluated in
order to understand the physical mechanism of the propagating waves
through the bottom layer structure. Based on a canonical geoacoustic
model , the Langer uniform asymptotic approximation is applied to evalu-
ate the total plane wave reflection coefficient accurately. Then the
Sommerfeld integral is evaluated by the method of steepest descents.
The expression for the reflected field is fully analytic and provides
physical insight into the understanding of energy partitioning in the
sediments. With inclusion of the new method to analytically express a
souna velocity profile shape based on measurements, the approximate
solution provides a full analytic expression of the reflected field
based on a realistic geoacoustic model.

Various geoacoustic models, with emphasis on changes in the shape
of the sound velocity profile in the sediment layer, are examined and
their parametric dependences on the associated reflected fields are in-
vestigated. The conditions neccessary for the shape of the profile to
be important are also quantitatively defined and are demonstrated in
theoretical data as well as in real data.
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n(Z) Phase integral defined by z z Q(z') dz' where 0

Q(zt) = 0

1o n1H n(z) evaluated at z = 0 and z = H, respectively

g Reference sound velocity gradient in the layer .

YO, Y2 Vertical slownesses in the water column and in the
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Chapter 1: Introduction

It has been observed In the deep ocean that the total acoustic

field generated by a harmonic point source placed in the water column

near the ocean bottom is characterized by strong interference between

the field reflected off the bottom and the direct field through the

water colum. The amplitude of this total field thus shows a distinct

spatial interference pattern with horizontal range(cf. Fig. 1.1).

This thesis involves the analytic computation of the bottom re-

flected acoustic field using assumed geoacoustlc models in order to

unoerstand the mechanism of propagating waves in ocean bottom sedi-

ments. The analytic results obtained here are based on asymptotic ap-

proximations valid in the far field and characterize different types of

rays vich contribute to the total reflected field. Therefore, they

provioe physical insight into the understanding of energy partitioning

in the sediments.

The methods developed in this thesis will be applied both to the

examination of the fields generated by various "canonical " geoacoustlc

moaels and to actual experimental pressure field measurements made by

Frisk ana his co-workers[5]. Extensive tests to determine which major 0

ray paths contribute to the total reflected field will be performed

throughout horizontal range as well as an investigation of the effects

of geoacoustic parameters on such rays.

11
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1.1 Background

1.1 .1 Oblique incidence bottom acoustic experiments -

A typical experimental configuration by Frisk et. al .[5] is shown

in Fig. 1.2. A 220-Hz CW source is suspended on the trawl wire of the

ship which slowly arifts away from a receiving system that consists of

two receivers moored on the bottom. The source is maintained at about

100-200 ni above the bottom as it moves away from the receivers out to a

horizontal range of a few kilometers. By sampling the incoming signals

at a sufficient rate, Frisk obtains spatially continuous acoustic fields

near the bottom due to the time harmonic point source which is also

placed near the bottom.

Since the source and receiver are placed relatively close to the

bottom in the experiments as shown in Fig. 1.2, except at relatively

short ranges, most of the rays interact at small grazing angles with the

sediment layer with increasing sound velocity(cf. Fig. 1.3). This is

not the case if the source and/or receiver are placed at a high eleva-

tion above the bottom, for example if both are at the surface or if the

source is at the surface and the receiver at the bottom as done in more

conventional deep-sea seismic experiments for ranges up to a few kilo-

meters(cf. Fig. 1.4).

Spudich and Helmberger[11] computed the seismic responses of simi-

lar ocean bottom models covered by a 4-km thick water column in a fre-

quency band of 1-30 Hz for both source and receiver located near the

ocean surface. Step-function source responses were computed over the

range of 2-20 km with the increment of 1 km. In their computation they

13
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applied the generalized ray theory[I] to major ray paths excluding any

internal multiple reflections and absorption in the sediment layers, and

concluded that the sediment layer gradient and its thickness were insig- 0

nificant to the seismic responses. A major source of the effects they

studied was the basement structure under the sediment layers. In these

cases the rays interact with the sediments at steep angles and are

therefore relatively insensitive to the details of the sediment velocity

profi l e.

Because of these contrasting bottom acoustic interactions due to

the different relative locations of the source and receiver with respect

to the bottom as shown in Figs. 1.3 and 1.4, we shall not be concerned

with geoacoustic models with multi-layered structures, but instead shall

concentrate on the detailed profile shapes of a single layer. Also, for

hioher frequencies used in Frisk's experiments, the effect of absorption

in the sediment layers now become more important, and the number of

major ray paths may be greater for the close range fields where, for ex-

ample, the effects of multiples may not be negligible.

Vidmar[13] and R. Chapnman[3] have reported that for typical ocean _

bottom structures there is a minor energy-loss mechanism due to the pre-

sence of shear waves in the bottom for near grazing incidence. Also, in

our experience with real data analysis, there has been success with geo-

acoustic models that exclude shear waves[5j, and we shall therefore not

include shear in our geoacoustic models.

17
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1.1.1 Sommerfeld Integral and geoacoustic models of the bottom

For harmonic time dependence(e-i't), the reflected spatial part

of the acoustic pressure field P in a homogeneous medium due to a point

source placed in that medium, which lies over a second horizontally

stratified meoAum can be expressed by the Somnerfeld integral[1,2]

O

p iWt fH(l)(wpr) - R(p,w) exp[iuvo(z 0 + z) dp (1.1)

-O

where p = horizontal slowness (ray parameter)

z O, z - source and receiver heights above the boundary

r . horizontal range

R(pw) = plane wave reflection coefficient

YO= vertical slowness in the source-receiver medium

(1)H = the zero-th order Hankel function of the first kind

= angular frequency of the source

Given the small sound velocity gradient in the water column in the

deep ocean (typically less than .016 s-1[10]), it is reasonable to

assume that the water colunm is homogeneous, especially for experiments

which involve small source and receiver heights. In many abyssal plain

regions, one may also assume that the ocean bottom is horizontally

stratified. In such cases, Eq. (1.1) is a valid expression for the

bottom reflecteo acoustic fields.

The plane wave reflection coefficient R, which is the weighting

factor in the integrand of the Sommerfeld integral, contains all of the

18
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acoustic properties of the bottom as well as satisfying the boundary

condition at the ocean bottom interface. The physical and mathematical

complexity of R depends on the detailed geoacoustic properties of the

bottom structure.

In order to obtain analytic solutions for P in Eq. (1.1), we must

consider reasonably simple geoacoustic models. Yet such models must be

realistic enough to generate fields which compare favorably to real

oata. hacpherson and Frisk[5] have obtained analytic expressions for

the total field using the method of normal modes, but their geoacoustic

model was a slab configuration, a homogeneous layer between two homo-

eneous halfspaces. Using a modified uniform asymptotic method,

Stickler and Ahluwalia[12] obtained analytic solutions based on a more
a2

real istic model containing a layer with a 1/c 2 -I inear profile between

two homogeneous halfspaces. However, the sound velocities were required

to be continuous at the layer boundaries, i .e. no discontinuities were

allowed. In both cases, the geoacoustic models used as input to them

lack some realistic features necessary to discuss real data. A more

complete geoacoustic model should contain an inhomogeneous layer with a

monotonically increasing sound velocity profile bounded by homogeneous

halfspaces with arbitrary boundary conditions as shown in Fig. 1.5.

1.2 Asymptotic approximation of the Sommerfeld integral

Our goal is to evaluate the Sonmerfeld integral analytically. This

involves two steps. The first step is to obtain the reflection coeffi-

cient R based on our geoacoustic models and the second is to evaluate

the integral. In order to obtain R, we must evaluate the field inside

19
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Fig. 1.5 A geoacoustic model considered in thiis thesis. The sound
velocity in the layer monotonically increases with depth.
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the layer. Provided that the sound velocity within the layer monotonic-

ally increases with depth, we can apply the Langer uniform asymptotic

approximation(L.U.A.A. )[7, 8J to compute the field. The method has been

applied by Cormier and Richards[4], and Kennett and Illingworth[6] in

numerical seismic synthesis. The advantage of the L.U.A.A. is that,

unlike the W.K.B.J. method, it is uniformly valid for any horizontal

slowness (or equivalently horizontal component of the wave numbler) in a

given medium for any profile shape as long as the sound velocity mono-

tonically increases. Once the field inside the layer is obtained analy-

tically, the analytic expression for the reflection coefficient R can be

found easily from the boundary conditions.

It is of interest to understand the energy partitioning of pro-

pagating acoustic waves associated with various ray types as a function

of horizontal range. In order to do this, we shall expand the total

reflection coefficient in a series of partial reflection coefficients

wbich have a straightforward physical ray-phase interpretation. Having

cone this, we shall evaluate the resulting series of Sommerfeld inte-

grals by the method of steepest descents. The results are more accurate

than that of ray theory and provide reflected fields readily associated

with different ray types.

1.3 Overview

Chapter 2 focuses on the mathematical details of the analytic

evaluation of the field in the layer using the L.U.A.A. Satisfying the

boundary conditions, the total plane wave reflection coefficient will be

then evaluated. Finally, the Sommerfeld integral will be evaluated us-

21



ing the method of steepest descents. The accuracy of these methods is

also demonstrated by comparison with numerical results. Two types of

interface waves, one along the ocean bottom interface and the other

along the subbottom interface, are also discussed. An equation for the

interface wave along the subbottom for the n-th multiple reflection is

derived.

In Chapter 3, using the mathematical tools developed in Chapter

2, we examine a wide range of geoacoustic models by parametrically vary-

ing the layer thickness and other geoacoustic parameters, as well as the S

source-receiver geometry. We shall also discuss a simple but accurate

analytic expression for the sound velocity profile, given in the form of

c3 -linear in depth, based on measurements in order to make our geo- S

acoustic models more realistic..

Chapter 4 is devoted to the discussion of caustics due to three

different canonical profile shapes, the I/c 2 , c and c 3-linear pro-

files. Caustic equations are derived for these profile shapes. It is

shown that the top portion of the sound velocity profile in the layer is

most critical for caustic formation based upon our geoacoustic models.

The fields near the caustics are also derived and examined for these

profile shapes. It will be shown that the amplitude variation of the

fields near the caustic solely depends on the curvature of the caustic. 9

Finally, in Chapter 5, real data collected from field experiments

will be analyzed using the technique developed in Chapter 2 and dis-

cussed using the knowledge obtained from the model studies in Chapter

3. It will be demonstrated that the recovery of geoacoustic parameters

from measurements has a strong connection to the geometric orientation

22
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of source and receiver.
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CHAPTER 2: Mathematical Formulation

Analytic solutions to the problem we have described in Chapter 1

will be discussed in great detail in this Chapter. Our mathematical

treatment for the evaluation of the Sommerfeld integral given by Eq.

(1.1) is based on asymptotic expansion techniques which assume that the

receiver is many wavelengths away from the source.

Our asymptotic approximation to the reflected fields is twofold.

The first step is to compute the total reflection coefficient, which is

the weighting factor inside the Sommerfeld integral, by using Langer

uniform asymptotic approximations. The results are accurate and yet the --

analytic solutions are general enough to treat various typical geoacous-

tic moaels. The second-step asymptotic approximation is to evaluate the

Sommerfeld integral by the method of steepest descents with the re-

flection coefficients already evaluated. The final solutions for the

reflected fields are completely analytic and are functions of the geo-

acoustic parameters and source-receiver geometries.

2.1 Computation of the Total Reflection Coefficient Using the Langer

Uniform Asymptotic Approximation

The total reflection coefficient for the proposed geoacoustic

model shown in Fig. 1.5 will be given after general solutions to the

acoustic velocity potential in the sediment layer are evaluated using

the Langer uniform asymptotic approximation (L.U.A.A.)[1O]. Then it

will be shown that the resulting closed form of the total reflection

25



coefficient may be reduced to ray theory results for certain regions of

incioent angles where ray theory is valid. This total reflection coef-

ficient based on the L.U.A.A. will be compared to a numerical result

generated by the Thomson-Haskell propagator-matrix method[l].

2.1.1 General Solutions

We will refer to the water column, the layer and the basement as

medium 0, 1 ana 2 respectively. First we consider the general solutions

in medium 1. The acoustic time dependent velocity potential W(x,y,zt)

satisfies the the following inhomogeneous wave equation

2  1 W(r,z t) =0 .

After the harmonic time dependence e- i t is assumed, W(r,z,t) can be

written as

W(r,z,t) C D(r,z) e' i t

After the horizontal terms are separated from (:)(r,z), we are left with

the z-ependent potential Fl (z) which satisfies the onedimensional

Helmholtz equation, 0

d2F (z)12 + ,2Q2 (z) F1(z) = 0 (2.1)

Cz

where = angular frequency (rad/s)
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21 . 2
an a Q2 (z) 1 2 (2.2)

c (z )

Here cl(z) is the sound velocity profile in the medium 1 as a function

of depth and p is the horizontal slowness or ray parameter. The hori-

zontal wave number kr can be given in terms of p as kr = cp and the

vertical wave number kz as kz=caQ.

Solving for F(z) analytically for a given cl(z) is in general

very difficult except for a few examples[5]. A more desirable solution,

which does not have to be exact, but rather flexible in dealing with

various acoustic properties in ocean bottom, may be found in a form of

asymptotic approximation. We will now consider the following differen-

tial equation:

SC2IQ 2(z) - E(z)] G(z) 0 (2.3)

were E(z) is given by

E = 3 1/6 1/2 (2.4)

Here n is known as the phase integral and is given by

z
n(Z) = Q(z') dz' (2.5)

zt
P _ •S

where zt is the turning depth defined by the condition,
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Q(zt) z p 2  1 0 (2.6)
c 1i(z t)

In general, when absorption is incl uded in the sound velocity pro-

file, c1 (z) is a complex function. Thus, z t may be a complex

nunber[6]. The phase integral in the complex z-plane can be evaluated

along a contour such as one shown in Fig. 2.1. The branch cut due to

the radical Q is present where the imaginary part of Q is zero. Since

the contour always originates at the branch point zt, there is no

branch cut contribution involved and the integration is quite straight-

forward.

The basic argument of the L.U.A.A. is that if E(z) approaches zero

as w/Edc(z)/dz] becomes very large for any given p, then G(z) asymptoti-

cally approaches the desired solution F(z). Indeed it is possible to

obtain such an E(z) as long as the following conditions are satisfied:

1. There is only one first-order turning point for a given p in

the profile. A first-order turning point is defined as one

for which Q(zt) 0 0, but Q' (zt) A 0. Here the prime

denotes the derivative with respect to z.

2. The profile c1 (z) must be smooth [i.e. the condition given

by Eq. (A.7)] near the turning point. Since this condition

must be met for any p and associated zt , c1 (z) must be

smooth everywhere.

In brief, c1 (z) must be a sooth, monotonically increasing func-

tion. The acoustic properties within a layered structure of the ocean

28
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Im z

Re z

Zt

Fig. 2.1 The complex z-plane with a integration contour to evaluate
the phase integral TI. The branch point is located at z
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bottom typically satisfy these conditions.

The exact solutions of Eq. (2.3)[9] are given by

G1 (Z) = v1/2 1/4 Ai(-v) (2.7a)

G2 (Z) = 1/2v1/4 Bi (-v) (2.7b)

where v _ [ tinz)] 2/ 3  (2.8)

Therefore, the z-component of the field in the layer for the given

p becomes asymptotically

Fl(Z) - Q/2 v 1/4[BiAi(-v) + B2 Bi(-v)] as w co (2.9)

The error analysis of the L.U.A.A. is discussed in Appendix A.

Since medium 0 is assumed to be homogeneous, the z-component of .

the general solutions for the velocity potential can be easily obtained

and is given by
S

Fo(z) = A1 eiYoz + A2 ei- ~YOz (2.10)

where = (4... p 2) 1' 2  (2.11)

Similarly, in medium 2

F2 (Z) = C1 e 'iy 2 z (2.12)
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where Y2= (7 7  p (2.13)
C2

Note that there is only one term in Eq. (2.12) in order to satisfy the

radiation condition. A1, A2 , B1, B2 and C1 are arbitrary constant co-

efficients for a given p and remain to be found from appropriate bounda-

ry conditions, which will be discussed shortly. After multiplication by

the horizontal component, the potential is given by

Izi(r, = Fi(z) elwpr; i = 0, 1, 2 (2.14)

in the i-th medium for a given p.

2.1.2 Bounuary Conditions

Since the pressure and vertical component of the motion of the

particles must be continuous across the boundaries, p1 i and d/dz must

be equal at the interfaces in order to satisfy these conditions respec-

tively. Thus we can obtain the following equations:

At z = 0 (the ocean bottom)

PO (A + A2) - p1 [B1 G1 (O) + B2 G2 (O)] (2.15)

- A2 ) = BjGi(O) + B2 G (O) (2.16)

At z = H (the subbottom)

P1[BIG1 (H) + B2G2(H)] p2 ceW (2.17) -2C
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B Gj(H) + B2 Gj(H)= - iCily2 e'i Y2H (2.18)

where Gl(z) = Q 1/2v1/4Ai (-v) (2.19a)

G2 (z) Q-1/2v1/4 Bi (-v) (2.19b)

Solving for A1 assuming a unit amplitude in the incident wave (A2 = 1),

we findlly obtain the total reflection coefficient for this geoacoustic

ocean bottom model, S

(A(2- B( 2 ) (AM1  - BM1) - (AM1  - BM1) (A(2 ) 8 8(2))
R(p) = 0 0 H H 0 0 H H (2.)

(2) (2) (H -B
1 )- (1) +(1)i (2) 8 (2))

(A +B 0 (A H- H ) 0 A 0' (A H H

where A01),(2) = ipyoW(1) (2) = 0) (2.21a,b)

B(1)(2) = 1/2 W I ),(2) (z = 0) (2.22ab)0 -P0 QOvO d

A = ip 1Y2W (2) (z = H) (2.23a,b)

BI)(2) .P2QHVH /2w1),(2) (z = H) (2.24a,b)

with Q0 = Q(z=O), QH = Q(z=H)

vo- v(Z=O), vH = v(Z=H)

W(1)'(2)Mz = Ai(-v) i iBi(-v) (2.25a,b) -

W(1),(2)(V(z = (dAi-v) TdBi(-v)) (2.26a,b)
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Here W(1 ),(2 ) are known as Fock functions[9]. The solutions may be

given in terms of Hankel functions of the 1/3rd order. However, the

advantage of using Fock functions is that because they are linear com- S

binations of Airy functions, it is easier to evaluate them numerically

than Hankel functions. In addition, similar to Hankel functions, their

asymptotic expansions (see Appendix C) behave like propagating plane

waves. In general, W(1) and W(2) are not complex conjugates of one

another since v as well as Ai and Bi may be complex numbers.

This asymptotic approximation of the total plane wave reflection

coefficient given by Eq. (2.20) is valid for any shape of the sound

velocity profile in the sediment layer as long as it is a slowly and

monotonically increasing profile. Not only these conditions are met in -

geoacoustic mooeling of a typical ocean bottom, but also this new plane

wave reflection coefficient allows us to do more detailed geoacoustic

moueling by providing some freedom in the choice of profile shapes. The

total plane wave reflection coefficient based on this formulation is

compared to the numerical resultl13] generated by the Thomson-Haskell

Propagator-Matrix method[i] for a typical case of interest (cf. Fig.

2.2) for a frequency of 220 Hz. As shown in Fig. 2.3, their agreement

is so good that one may not distinguish one from the other.

-3
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Fig. 2.2 A typical geoacoustic model. A frequency of 220 Hz is used.
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Fig. 2.3 The total reflected coefficients for the model shown in Fig.
2.2. (a) The Thomson-Haskel propagator-matrix method with a
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asym pto ti c a ppr oxi ma tion .
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2.2 Physical Properties of Reflection Coefficients

2.2.1 Expansion of the Total Reflection Coefficient

In this section, the total reflection coefficient obtained using

the L.U.A.A. will be decomposed into an infinite sum of partial reflec-

tion coefficients. It will be shown that each term represents its own

unique physical property analogous to ray theory for special cases where

the turning depths are away from both of the interfaces.

The procedure of the expansion is analogous to a ray expansion[11

which decomposes the total reflection coefficient into an infinite sum

of reflection coefficients: First, we divide the numerator and denomi-

nator of Eq. (2.20) by -

(A (2) B (~2))(A(') B()0 0 H N

to obtain

-A (A(') B(1 .)(A-100 0 0 H Hi
R(p) (2) (2) (2) )( 1)

A0 + 8 (A 0  +B80 ( H BH

(A (1) .0 B 1 )(A (2 ) B(2~)1
Xl [1 0 0 H (2.27)

L (A(Z) + H()( H

Second, we perform a binomial expansion of the second bracket.

This process may be justified by introducing a small positive imaginary -

part in c1 (z) which makes the absolute value of the second term always

36
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smaller than unity, and letting the imaginary part go to zero after the

expan- sion. After a few more steps, R(p) becomes

R(p) = R0 + Z Rn (2.28)

n=1

wh ere

A(2) , B_ 2
0 0

=o --(o-,. -(o (2.29)-

4pOp jyOQO,,-'2AO2 2

R ppyQv" H H
n (Ao2 )+ B1 2)) 2  A _ B

0 0 H H

X ((1) + B( 1) (A (2 ) B B2 ) n
rC0  + 0  H HN (2.30)
0L12 0 H H

In order to obtain a physical interpretation of each term, we sub-

stitute the asymptotic forms of the Airy functions. The conditions for

which the Airy functions may be expanded are equivalent to the condition

that the turning depth for a given horizontal slowness p is many wave-

lengths away from either boundary. The first term, R0 can then be re-

auced to

Ply0 - P~
R - p1y0+ PoQo (2.31)

0 P 1 Y0  P

This is simply the Rayleigh plane wave reflection coefficient in medium 0

37
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over the homogeneous hal f space which is characterized by c (z=O) and

P1 . This is the plane wave reflection coefficient one would expect to

obtain for the specularly reflected ray using ray theory. Similarly,

for large v, R1 can be reduced to

ToiT 10 R12 e2 iw(no-nH) z t < H -

RI  {- (2.32)

2iT no zi,/2 0 > Z > H

where TO1, TIO and R12 are local plane wave transmission coefficients

and reflection coefficient across the medium 0 to 1, 1 to 0 and 1 to 2,

. respectively. This is the result one would obtain from ray theory for a

ray which reflects off the subbottom or turns within the layer once, de-

pendin9 on .the location of the turning depth. Notice the -ir/2-phase

shift associated with the refracted ray, a term which is often introduc-

ea as a correction in pure ray theory. In exactly the same manner Rn

can be reduced to the following asymptotic form for n > 1.

R1ER10R 12 e2 iu(no - nH)]n-1 < H

Rn  ~(2.33)

R 1 R10 e2 1ino - iw/2]n-1 0 > z > H

where R's and T's with two integer subscripts are local plane wave re-

flection and transmission coefficients at the interface indicated by

their subscripts. From the phase in Eq. (2.33), it suggests that Rn _

behaves asymptotically in n like the n-th multiple which reflects or re-

fracts n times in the layer. R1 is a special case of Rn with n =1.
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Because of the physical interpretation obtained by using the asymptotic

approximation, we may call R0, R, and Rn the specular, the primary and

the n-th multiple, respectively. The schematics of their physical prop- -

erties are shown in Fig. 2.4.

We note that while reflection coefficients based on ray theory

fail when the turning depth is very close to either interface, these new

reflection coefficients based on the L.U.A.A. are uniformly valid for

all values of p regardless of the locations of the corresponding turning

cepths. This is one of the most powerful features of the Langer reflec-

tion coefficients.

2.2.2 Comparison with Ray Theory Results

Interesting features of the Langer reflection coefficients as

compared to reflection coefficients based on ray theory will be dis-

cussea next. In Figs. 2.5-2.7, the specular, primary and second multi-

ple Langer reflection coefficients are compared to the ray theory re-

sults for a geoacoustic model shown in Fig. 2.2 at a frequency of 220 Hz.

Because of the small sound velocity drop at the ocean bottom, we •

observe a minimum amplitude in the specular reflection(cf. Fig. 2.5a) at

a particular incident angle. According to ray theory we would expect

the specular reflection coefficient to be zero at this angle(cf. Fig.

2.5b), which is the Brewster angle (angle of intromission) associated

with two homogeneous media where the upper half-space has the properties

Po ana co , ana the lower half-space has the properties p, > pO and

ci(z = 0) < co [4]. However, the specular reflection coefficient does

not become identically zero according to the L.U.A.A., but only becomes a
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minimum. This is due to the fact that the positive sound velocity

gradient in the sediment layer prohibits total wave energy transmission

even at the Brewster angle. This discrepancy is also observed in the

plane wave reflection coefficients for the multiples(cf. Fig. 2.7).

Another interesting feature of the Langer reflection coefficients

can be seen for the geoacoustlc model shown in Fig. 2.8. Here the sound
S

velocity is continuous at the water-bottom interface, but there is still

a velocity graaient in the bottom and the densities in both media are

the same. Ray theory predicts no specular reflection or multiple re-

flections associated with the water-bottom interface because there is no

acoustic impedance discontinuity exists across that interface.

However, according to the Langer reflection coefficients, as shown

in Fig. 2.9, one may still obtain non-zero reflection coefficients near

grazing incidence. These unexpected results may be explained by the

fact that the Langer reflection coefficients take into account not only .

the discontinuity in the acoustic impedance but also the discontinuity

in the derivative of the acoustic impedance with respect to z. This is

another example where the Langer reflection coefficients demonstrate ___

their improved accuracy over ray theory based reflection coefficients

for a stratified slowly varying medium.

2.3 Asymptotic Expansion of the Sommerfeld Integral by the Method of
Steepest Descents

Our goal is to compute the reflected fields due to a harmonic

point source, namely to obtain the leading order asymptotic behavior of

the Sommerfeld integral, Eq. (1.1), by means of asymptotic approxima-

tion. So far we have found the closed form of R(p) in Eq. (1.1) for our
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Fig9. 2.8 Geoacoustic model with a interface where there are no discon-
tinuities in sound velocity and density.
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geoacoustic models, and further how to break up R(p) into an infinite

number of terms each of which has a physical interpretation in terms of

ray theory.

After substituting Eq. (2.28) in Eq. (1.1), we obtain a series of

Sommerfeld integrals each of which contains Rn. An asymptotic form of

each Sommerfela integral can provide us an analytic expression for the

reflected field as a function of horizontal range coupled with the phys-

ical properties of Rn associated with the integrand. While the co-

herent sum of these asymptotic forms of the integrals provides the total

reflected field, we can also evaluate how the individual reflected

fielas contribute to the total reflected field along horizontal range

for various sets of geoacoustic parameters and source-receiver geometri-

es.

Thus, after the Hankel function is replaced with its asymptotic

form,

(1) /2eipr i/4.(wpr) (- Upr >> ,irupr

our problem is to evaluate

Co
P = :Pn -

n=O

a~1/2
where Pn /-7 eiw/4 fR n  pl ei u [ Yo(z+zo) + pr] dp (2.34)

from which we obtain the reflected field representing the physical prop-
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erty that Rn carries.

2.3.1 Mathematical Treatment before the Method of Steepest

Descents is Applied

Fig. (2.10) shows the complex p-plane with branch points at p

1/c0 and 1/c 2 . (Only the i/co-branch point is present for P0 contain-

ing R0.) The branch cuts, known as the E.J.P. cuts[8], satisfy the 5

condition that the imaginary parts of the radicals, p, yo and Y2 are

zero. Notice that they are the only radicals that we must be concern-

ed with in the process of deforming the integration contour to eval- 0

uate Eq. (2.34) even after the expansion of the total reflection coef-

ficient. Unlike a slab configuration of homogeneous media[t0] , i.e. a

homogeneous layer between two different homogeneous hal f spaces, we do

not create additional branch points as a result of the ray expansion of

the total reflection coefficient. QO and QH may appear as radicals in

Rn at first glance but with v-1/2 there is no ambiguity in sign. .

We shall apply the method of the steepest descents[2] to eval-

uate Pn" In order to do so we must rewrite Pn in the form of

OD

in Fn(P) ei n(p) dp ; o (2.35)

where F(p) must be a slowly varying function of p, compared to the com- .

plex exponential term in order for the method to be valid. When n # 0,

this would not be the case if we made the direct substitutions

P 1/2
Fn(P) =

On(p) = yO(Z+Zo) + pr
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Fig. 2.10 The complex p-plane with the branch cuts.
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because R is in general a very fast oscillatory function (See Fig.

2.6 or Fi9. 2.7 for example). In order to convert Eq. (2.34) into the

form of Eq. (2.35) satisfying the above requirement, the following sub-

stitutions are suggested:

Vn p1/2
Fn(p ) = (2.36)

n(p)= yo(z + z) + pr + 2nu (2.37)

where

V = Rn e - 2 iunt (2.38) •

0

f Q(z') dz 0 > z t > H (2.39a)

zt

with 0

/ Q(z') dz' zt < H (2.39b)

H

in which the phase term of Rn is estimated from the asymptotic behav-

ior of Rn, which is identical to the ray phase, then separated from

Rn and added to the complex exponential term in the Integrand. Fig. -

2.11 shows V vs. incident angle for the primary reflection coeffi-

cient of the geoacoustic model shown in Fig. 2.2. Compared to Fig. 2.6,

the phase curve has been significantly stabilized. The only appreciable . .

phase variation occurs between critical incidence and the angle at which

the ray completely turns in the layer. Since Vn approaches Rn as

50 _ 9

)1



0

0

IT0

LI

LL W
w . 0

z 0.5---------------------------- --
zI
2<~

0 --- --- --

0 - IT I I

0 1'0 2'0 30 40 50 6'0 7'0 8'0 90-
INCIDENT ANGLE (de '

Fig. 2.11 The primary reflection coefficient for the model shown in
Fig9. 2. 2 a fter th e ph as e term 2 n~ i s r emov ed.

51
~0



S

becomes very small[cf. Eq. (2.38)], the substitutions given by Eq.

(2.36) through Eq. (2.38) are valid even when nw is not large.

0

2.3.2 Evaluation of Pn by the Modified Method of
Steepest Descents - Saddle Point Contribution

Strictly speaking, a direct application of the method of steepest

descents to the Sommerfeld integral with the Langer reflection coeffi-

cient, which is a function of p and w, is not valid. However, by ex-

cluding the second derivative of Vn in the expansion, we may still

apply the basic technique to obtain analytic solutions to the Sommerfeld

integral whose accuracy is improved over the results obtained by ray

theory. The detailed derivations and justifications are discussed in

Appendix B, and here we only introduce the necessary formulation to

obtain the asymptotic solution to the Sommerfeld integral of the n-th

term.

First, we must fina a saddle point ps which satisfies . .

n (p) - (z + zO) + r + 2np' (ps) = 0 (2.40)

This is equivalent to locating an eigenray connecting two fixed points.

In some cases, there could be well separated multiple saddle points(but

not a caustic), found for the same source-receiver geometry.

Second, we deform the integration contour passing through the sad-

ale point(s) along which the real part of 0 is constant and the imagi-

nary part is positive. Such a deformed contour is shown in Fig. 2.12.

As a result, the complex exponential term now becomes a decaying term

along this deformed contour with a maximum at the saddle point. There-
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fore, if the amplitude of the integrand is a well behaved function, the

integration may be approximated by integrating through a small domain

near th e saddl e po int (marke d wi th ")in Fi g. 2.12), an d th e res t o f

the contribution asymptotically becomes zero.

Next we expand the integrand in a Tayl or expansion in p about pSP

and Eq. (2.35) becomes

f dp [F (Ps + Fl (p5)(p -p ) 2~F" Ps (

X expiwL(O +a.0l11(p P )2 + L oil l(p - p3+ L oIV(p p 4] (2.41
n 2 5 3 n P5) , n s (.1

aria the asymptotic expansion of Eq. (2.34) due to the saddle point Fins

up to the second order term becomes[2]

-eii/4,f eiw[-fo(z+zo) +psr]

1/2

X R R(p) - 1 + 1-N] (2.42)

0" F' 0IV A112 F"
winr I=~ n + 1 n -5 n - '2.43)

.6 n F n n 7 n P S

z +
with All 0 + 2l (2.44)

n Z3
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3 (z + z0 ) p
Ali= - + 2nv' (2.45)C o Yo

IV + 2IV
n= -2(z * z0 ) 4 7 (2.46)

C0 Yo

= - + - + + (2.47)

S1n= 1 + p2 1 (2.48)

n y 'nV 0 Y 4p

wh ere for n = 0

S

= - 2 2 (2.49)

0 0 A(2)2 B (2)2
A0  0

and for n > 0

S

+ (Qovo-1 2 ), A(1) 1+ B(1)'
Vn -- *+ (n- 1)Vn y 2 Q v- 1/2 A( 1 ) + B (1)

0 o 0 0
2)' (2)'(2)' + (2) 1)

+ n ~ H n + 1) n H.8 ~ 1  81
(2) - (2) (2)  - 2niw '

AH H A BAH H

(2.50) _ 9
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YOO

wh ere

(1),((2) 06 (

0 = PO ( VO) + SOO WI/ 2 (VO) ] (2.52a,b)

B1),(2)'= -P2[S W'(1 )'( 2 )(v H ) + SH V W (1 2)] (2.54a,b)

w 0ere S 1/2 (2.55a)"

Sir= 0 1/2 (2.55b) '

SH =H H 1/(25b

The above formula, Eqs. (2.41) through (2.55), are also valid for

complex sound velocities to include absorption. In this case, a complex

saddle point must be found from Eq. (2.40) where the phase integral 1 is

evaluated for a complex turning depth z t . We also point out that Eq. •

(2.41) is the contribution from a-single saddle point. Thus, if more

than a single saddle point exists, their contributions must be evaluated

and summed.

If N is set equal to zero[cf. Eq. (2.42)], the result becomes a

ray solution except Rn is more accurately evaluated by the L.U.A.A.

It is necessary to include the correction term N in order to be con-

sistent with the order of accuracy provided by the Langer formulation
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-critical incidence.
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which is valid up to order 1/u (See Appendix A). However, using the

same argument, evaluation of higher order terms in Eq. (2.42) or more

accurate integration of Eq. (2.34) by a numerical method would not in-

*l crease the accuracy of the result given by Eq. (2.42).

2.3.3 Interface Waves

Dealing with two different types of interfaces in our geoacoustic

models, we consider two physically and mathematically different types of

interface waves; one propagates along the ocean bottom interface where

the medium containing the incident wave is homogeneous and overlies an

inhomogeneous halfspace, while the other propagates along the ocean sub-

bottom where the medium containing the incident wave is inhomogeneous

ana overlies a homogeneous halfspace.

The first type of interface waves, known as an interference head

wave, has been extensively studied by Cerveny and Ravindra[5]. It is 0

the result of a coherent sum of many multiples which have closely lo-

catea shallow turning depths (cf. Fig. 2.13).

By definition[7], the interference head wave propagates along the

interface such that the upper halfspace is homogeneous with the sound

velocity co and the lower hal fspace has the acoustic property as

c1 (z) = a + bz where a > c0 and b, z > 0. However, unless a limit- -

ing case where b approaches 0 in cl(z) is considered, the mathematical

arguments are identical for the case where c1(0) is greater or less

than co, and both are the contributions from the multiples. _

We have observed that there are no additional branch points cre-

ated as the result of the expansion of the total reflection coeffi-
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I.,

cient. Thus, unlike head waves from the branch cut contribution[4] for

two homogeneous halfspaces, the interference head waves are special

cases of the saddle point contributions to the total reflected field.

Therefore, the ampl itudes of the interference head waves are proportion-

al to the reciprocal of the range, not the range squared.

The presence of the second type of interface wave is due to the

branch cut contribution as the S.D.P. crosses the branch point at p

1/c2 (but never at p = 1/co), and the contour must be deformed to go

arouna this branch cut so that the end points of the integration path

may remain on the correct Riemann sheet(cf. Fig. 2.14). The technique

to evaluate the asymptotic behavior of the contour integration around

the branch cut is completely analogous to that of Lanb 's problem(I],

[12j where the method of steepest descents is applied. The asymptotic

approximation of the interface wave due to the n-th multiple including

the primary reflection, PnL is given, as expected, by

I 1
) A(2 )  B(1) 2

(8 2 "o )A6. -+ .

0 0 2eiw[Yo(Z+Z O) + rlc 2 ]X - (2.56)
(A(2) + B(2) ) 2(A( 1 ) 1- B ( 1 ) 2 ) n

where L is the horizontal distance the interface wave propagates along

the subbottom for each subbottom interaction(cf. Fig. 2.15). As r be-

cones large so does nL, and PnL algebraically decays proportional to

I/ r2 . Al though Eq. (2.56) is the leading order term of the asymptotic
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expansion of PnL * it is of order 11w. Thus, this is all we can expect

from the Langer reflection coefficients.

The total subbottom interface wave contribution is given by the S

sum of the branch cut contributions of P nL as their S.D.P. 's cross the

branch point. Again, like the saddle point contribution, Eq. (2.56) is

valid for any inhomogeneous 'layer as long as it satisfies the conditions

necessary for the Langer reflection coefficient.

2.4 Limitation of the Asymptotic Expansion of Pn ,

The total reflected fields at two different values of z + z0 are

computed from the geoacoustic model shown in Fig. 2.7. The results are

compared to the ones generated by a numerical Hankel transform method

L12](cf. Fig. 2.16). They show good agreement except at a few rigions

of horizontal ranges where the asymptotic solutions to the primary and

multiple reflections break down at the critical incidence and caustics. S

As discussed in Secs. 2.3.1 and 2.3.2, in order for the method of

steepest descents to be valid, F(p) must be a smooth well-behaved func-

tion. Although F(p) can be made sufficiently smooth at most incident ... .

angles by separating out the complex phase term, the rapid change in

amplitude and phase near critical incidence is still a problem. Since

V'n(p) at critical incidence becomes large, the correction term N be- .

comes unstable. This is also true for reflections at very small graz-

ing angles. The second problem is that N blows up as 0''(ps ) ap-

proaches zero. This is the condition corresponding to caustic formation.

In the complex p-plane, the first problem is due to the fact that

the saddle point is located too close to the branch point, 1/c2 or 1/c O .
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For the second problem, the S.D.P. passing through the saddle point is

no longer a straight line near the saddle point, but branches out with

w/3 angles (cf. Fig. 2.17). Thus the expansion along the straight -

line(cf. Fig. 2.12), which resulted in Eq. (2.41), is no longer valid at

* the caustic saddle point and breaks down.

For either case another alternative must be taken in order to

evaluate Pn for such regions of p. A uniform asymptotic expansion of

the integral across the critical points [3] may be applied for these

cases, but it is very difficult to obtain any physical interpretation

from the results which involve special functions. Thus, the argument

for obtaining analytic solutions for these special conditions becomes

very weak. Therefore, our choice here is to numerically integrate .

along a slightly modified S.D.P. as shown in Fig. 2.18 under these cir-

cu ijis tances.

! _ e0 . ..
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Fig. 2.17 The steepest descents for a saddle point corresponding to a
caustic field.
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Chapter 3: Geoacoustic Models and Reflected Fields

S

In Sec. 2.1 the total plane wave reflection coefficients for our

geoacoustic models were derived using the Langer Uniform Asymptotic

Approximation (L.U.A.A. ). Then, using the Langer reflection coeffi- -

cients, we derived reflected fields due to a time harmonic point source

in Sec. 2.3. We shall next derive the phase integrals for the profile

shapes of interest.

After examining the full analytic solutions for the reflected

fields, particularly the asymptotic behavior of the fields at long

ranges, we cdn estimate important parameters to study various cases. We

shall then apply the above results to study energy partitioning of

eiyenrays for the ocean bottom geoacoustic models.

3.1. Profile Types in the Sediment Layer

The formulae for the reflection coefficient given by Eq. (2.20)

and the asymptotic expansion of the reflected fields given by Eq. (2.42)

through (2.59) are all based on an ocean bottom geoacoustic model con-

sisting of a layer with a slowly varying sound velocity (of any shape)

above a homogeneous infinite halfspace. Therefore, the only parameter

which must be found is the phase integral n defined by Eq. (2.5). This

quantity may be calculated numerically, but it is instructive to derive,

where possible, an analytic expression in order to obtain full analytic

solutions for the reflected fields and to investigate the physical ef-

fects of the geoacoustic parameters upon the reflected fields. We shall

69
9



limit our cases to three different profile shapes for which analytic

expressions for the phase integral and its derivatives are obtainable.

2a) 1/c 1-Linear Profile

For this case

1 ._ = 81 Z b (3.1) .-

where a and b1 are arbitrary parameters. This profile type is one

of the most commonly used for modeling slowly varying inhomogeneous

media because exact analytic solutions for the field are available in

the form of Airy functions. Also, the Langer reflection coefficients 0

become exact for this profile type as E(z) in (2.3) vanishes every-

where. Even though one might argue that the shape of this profile does

not necessarily represent actual profile shapes observed in real ocean - -

bottom seciments, it will be shown in Sec. 3.2.3 that this is a good

approximation to the correct ones as long as the layer thickness and

souno velocity gradient are small.

The analytic expressions, for the first, second, third and fourth-

-order derivatives of eta with respect to p for this profile type are

given below: - .

2 Q3  (3.2)
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d~ll Q(3.3)

02n 2 2p 2 c(z)

d pT a c (z) Q

d3
1 2 P 2p2c2 (z)(35

d p a c (zQ

= b (3.6)
d pT a~c()

vAiere Q =[1/c 2(Z) -2 p) 1/2

b) c Ilinear Profil e

For th is case

C 1(z) a~ 2 b 2  (3.7)- 9

vhere a2 and b2 are arbitrary parameters.

This is another common profile shape, a straight line between two -

*fi xed endpoints. Formulae for the ph~ase integral and derivatives for

this profile are given by

Cc, 11 c(z))Q (3.8)

a (71
n2-P-
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n2 2

77 - (a2 c1 (z)Q p (3.10)
d p

-3n21 1 2

d a2 c 1(z)p Q
3

c) C3-tLjnear Profile

For this case

c3(z) = a3 z + b3  (3.13)
1 3

where a3 ano b3 are arbitrary parameters.

This rather unusual linear expression for the sound velocity Is

ddded to our analysis in order to investigate more realistic geoacoustic

mudels derived from measurements[3]. The sound velocity in the bottom

may be given as a function of one-way travel time t from direct

measurements and is often expressed in terms of polynomials in t. From

these expres- sions, Hamilton has studied sonobuoy bottom reflection

data ano statis- tically obtained a form for the sound velocity as a

function of depth which he fittea with third-order polynomials[2]. As

seen in Fig. D.1, the major characteristic of the "Hamilton profile" is

that the sound velocity gradient near the ocean bottom is larger than

that of the deep- er portion of the profile - this is just the opposite

of the behavior for the case of the 1/c 2(z)-linear profile.

It has been found by the author that the "Hamilton profile" may be
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well approximated by a simple linear expression as introduced here.

From the given coefficients of a third-order polynomial in t, one may

obtain a3 and b3 in (3.13) from the formula provided in Appendix D. 0

Their agreement is quite good even in the deep portion of the profile

where the maximum error is expected (See Fig. D.1). The validity of

this rather simple approximation is also discussed in Appendix D.

The analytic expressions for n and its derivatives may be easily

obtained and are given by

n3 - p2 (3.14)

dn3  c 1 (z)Q 2 2

=n a3 P [2 + c(z)] (3.15)

3 2
-7 = - [2 - p c(z)] (3.16) -- l

a3 p c1 (z)Q - S

- 3 [12p2 3pck1(z)_ 8] (3.17) . .
ad p ac (z)p Q " c _(z)

4
an3 3 L2OQ2+Igc (z)4Q 4p 2+7p 2c (z)Q 2 (3.18)

dp a3 cI (z)p Q

Similarly, a profile whose form is cM-linear with M = 2, 4 or 5

also provides simple analytic expression for the phase integral. The

general rule is that the greater M is, the greater the gradient near the

ocean bottom. These profiles may be used instead of the c3-linear

form, depending on the size of the curvature of the profile shape to be
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modeled. We choose to study the c3 -linear profile because it demon-

strates the best agreement with the measurements reported by Hamil ton.

In order to study the effects due solely to the profile shapes, we

fix the eno points of the profiles so that the difference in character-

istic acoustic impedance across each interface remains the same. Once

the enopoints of the sound velocity in the layer are fixed, the coef-

ficients of the linear equation for each profile shape are automatically

fi xe a.

3.2 Important geoacoustic parameters in modeling

In this section, applying the mathematical results obtained in

Chapter 2 and profile shapes chosen for the layer in Sec. 3.1, we shall

discuss the effects of geoacoustic parameters on the reflected fields

ano thus establish guidelines to choose appropriate examples of geo-

acoustic models. Since we have obtained closed forms for the reflected

fields based on the geoacoustic models, we can discuss the direct para-

metric dependence of our solutions for some limiting cases.

The major quantities which are primarily responsible for the field

amplitudes for a given geoacoustic model are 0"- 1/2(ps ) and Rn(Ps) [cf.

Eq. (2.42)]. The first one controls the geometric spreading and the

other the amplitude of the plane wave corresponding to the particular

saddle point. Since we have fixed the endpoints of the layer profile in

modeling, the boundary conditions at both of the interfaces remain the

same. This leads to the condition that the asymptotic behavior of the

amplituoe of the reflection coefficient Rn is independent of the pro-

file shape as derived in Eqs. (2.31) and (2.32).
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Therefore, " Is the only quantity w ich sensitively responds to

the change in profile shape for fixed boundary conditions. In order to

investigate how related geoacoustic parameters affect this quantity, we

shall next examine the analytic expression of A" for a limiting case,

thouO its behavior is valid for a large portion of horizontal ranges

where the incident angle approaches grazing.

3.2.1 Geometric Spreading Near Grazing Incidence

In this subsection we shall demonstrate from the profile shapes we

have chosen that j" strongly depends on the sound velocity gradient at

the top of the layer and becomes independent of the profile shape near

razing incidence.

When an eigenray of a primary or multiple reflection enters the

ocean bottom near grazing, it turns within the layer at relatively shal-

low depth. The associated phase integral is calculated by integrating

from z - z t to z 0. Let us consider a2 ,//dp2 for the 1/cf-linear pro-

file case

z+ z0
= + 2  (3.19)
c0 0 -d

where the first term corresponds to the water path and the second term

corresponds to the layer-path given by Eq. (3.4). After replacing p and

Q with c1 (z)/cosa1 and c1 (z)/sina1 respectively, we rewrite Eq. (3.4) as

d2_ 2 2cos 2 Q"

= a c1 (0) s inc l  (3.20)
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where is the grazing angle in the layer at z = 0. We next differ-

entiate both sides of Eq. (3.1) with respect to z to obtain

2
2 c 1 (0)

(3.21)a 1cI (o)  "c---11

- -

After we substitute Eq. (3.21) in Eq. (3.20), we obtain

d2 T1  c 2(0)
1 - -l(O) (2cos 21ia). (3.22)d- z=O -k s inal

Since we are considering the case of small grazing incidence, the small

angle approximations to the leading order terms may replace the trigo--

noisitric functions and Eq. (3.22) becomes

2c 1(o) (3.23)

The minus sign is due to the fact that positive z is defined to be up-

ward in the water column, and therefore the velocity gradient in the

layer is negative.

Interestingly, the expressions derived for d2n/dp 2 for the

cl-linear and c3 -linear profiles become identical to the one given by

Eq. (3.23) when small angle approximations are made. Since we have

fixed c1(O) (and c1 (h)) for all profile shapes, the only variable is the
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sound velocity gradient at the ocean bottom for the rays which

completely turn within the layer.

The effect of this is expected to be more critical when the sum of

the source and receiver heights is sufficiently small so that the first
term on the right hand side of Eq. (3.19) does not dominate Xi". In

order to quantitatively determine the condition where the water-path

term does not dominate A", we shall again consider the case of small

* grazing incidence and assume that co  C (O) at the bottom. Then,

we obtain from Eq. (3.19) that

<< 2n co/(dc (0)/dz) (3.24)
ZO 0 1

where a is the grazing angle of the n-th multiple in the water column.

For a gradient of 1 s 1  the right hand side of Eq. (3.24)

becor es less than 100 m for the primary reflection(n = 1). As the order

of the multiple reflection increases, i.e. n in Eq. (3.19) increases

ano/or the sound velocity gradient at the bottom decreases, the layer-

-path contribution increases. Therefore, a larger value for (z + zO) . -

satisfies Eq. (3.24).

3.2.2 Geoacoustic Models with Large Layer Thickness
0

We have just learned that geometric spreading, particularly at

long ranges, is strongly affected by the sound velocity gradient at the

bottom. In order to obtain a wide range in the sound velocity gradients

an ong the three profile shapes, while keeping the same boundary condi-

tions at both interfaces, one must have a relatively large layer thick-

L
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ness and sound velocity gradient.

For the given endpoints, the sound velocity gradients of the I 2

arna c3-linear profiles are given in terms of the endpoint-sound ve-

locities, c 1 (0) and c (H) by

1/c2-linear: d 1(O 1 cc 2(0 [ (H) -c 2 (0)] (3.25) 0
dz 2H

dc (0) - 2 cH (0(.26
c 3_linear: dz1 cc3H- ().(.6

respectively, where N is the layer thickness.

We next define a "reference gradient" g by the gradient of the

c1-linear profile since it is constant throughout the layer. Then,

c10I) is given by

c (H) =Hg c c(0). (3.27)

After the above expression for c (H) is substituted, Eqs. (3.25) and

(3.26) become

dc 1(0) c 1(0) r 2+c01 1 (.8
dz -- c2(0)[Hg -lo]21(.8

dc (0) c-2 (0)
dz . (Hg + c1 (0)] 3 c 3(Oj (3.29)
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respectively. Now it can be easily shown for both expressions for the

raient dc l (O)/dz that

dc I (0)
> 0 as 9 > 0 for any H, (3.30)

dc I (0)

and d (0 as H > 0. (3.31) -

Therefore, if g and/or H become small, the variations in the velocity

gradient at the bottom and thus the entire profile shapes become close

to one another.

Fig. 3.1 shows the three profile shapes between fixed end points

in the layer whose thickness is 500 m with g = 1.5 s' 1 . For this ex-

ample the gradients of 1/ct, c1 and c -linear profiles at the bottom

are 0.8333 s-1, 1.5 s- 1 and 2.375 s- 1 respectively. However, if the

layer thickness is reduced to 50 m, they become 1.395 s- 1, 1.5 s- 1.

anu 1.576 s"I , respectively, for the same reference gradient at the

bottom. When 9 is small, the differences in sound velocity gradient

become smaller even though the layer thickness is increased to 500 m

(cf. Fig. 3.2).

One interesting non-dimensional parameter of our geoacoustic model

is the layer thickness divided by the average wavelength, denoted by

H/<xI>. A large layer thickness not only provides substantial varia-

tions among profile shapes between the endpoints but also sets a large

value for this parameter for reasonably high frequencies. The other

extreme case, namely the layer thickness being comparable to or even

smaller than the wavelength, is also of interest and we shall examine
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0
geoacoustic models whose layer thicknesses are varied according to the

size of this quantity in Sec. 3.3.

3.2.3 Geoacoustic models

While we shall use a large layer in order to study the effects of

different profile shapes, we shall model a small layer with a single

profile type since the exact profile shape does not matter much for

fixed endpoint velocities and a small layer thickness. We shall choose

the 1/ci-linear profile for thin layer cases since for this profile

the Langer reflection coefficients become exact.

Based on the modeling considerations discussed in this section, we

propose studying the following geoacoustic models, where we also assume

a one percent sound velocity drop at the top of the layer, a phenomenon

often encounterea in deep ocean bottom experimental data[l]:

Mdel I: Thin layer model with a 5-m layer and a 2 s -gradient

Model II: Small layer models with a 50-m layer and

a) a 0.5 s-1 -gradient,

b) a 1.5 s'l-gradient.

Model III: Thick layer model with a 500-m layer,

a .5 s-1-reference gradient, and .

a) a 1/c2 -1inear profile,

b) a c -linear profile.
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todel IV: Thick layer model with a 500-m layer,

a 1.5 s-l-reference gradient, and

a) a 1/c 2 -l inear profil e

b) a c3 -1inear profile

The quantity H/<01 > is 0.1, 1 and 10 for Models I, II, and III and IV,

respectively.

3.3 Reflected Fields for The Geoacoustic Models

We still have to fix two more parameters in our examples, namely the

source frequency and the source-receiver geometry. Regarding the source

frequency, relatively high frequencies must be used in order for the

asymptotic expansion to be valid. A frequency of 220 Hz is used for all

of the examples since it is the frequency that has been used in the

fiela experiments by Frisk[l].

The value of the sum of the source and receiver heights off the

ocean bottom Z is defined as

0*0Z =z + z0.

This has also been varied in actual field experiments, the typical range

being 125-250 meters from the ocean bottom. For the reflected fields

this is a single parameter. If the direct field due to the water path

is included in the total fields, the source and receiver heights must be

given separately.

The reflectea fields are grouped into three different ray types; the
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specular reflection, primary reflection and multiple reflections. A

schematic of these rays is shown in Fig. 3.3. The total reflected field

is evaluated from the coherent sum of all of the above fields.

In order to obtain the reflected fields due to the multiples the

infinite series of Sommerfeld integrals for the multiples may be trun-

catea at the m-th term so that the following condition holds:

m 0
R Rj RTOTAL; P < PS (3.31)

j=O j=O 3 0

where pso is the saddle point for the specularly reflected field and

Psi is the saddle point for the j-th multiple. This is a more rigor-

ous truncation criterion than truncating the terms whose contributions

are below a certain level after each of the multiple fields is computed .

because it guarantees that the total reflection coefficient in the

Sommerfeld integral is well approximated before the integration is eval-

uateoi.

3.3.1 Model I: Geoacoustic Model with Thin Layer

A geoacoustic model with a 5-meter thick layer and a sound veloci-

ty graoient of 2 s- 1 (cf. Fig. 3.4) was used to generate the reflected

fielas for Z = 100 m as shown in Fig. 3.5. Since the layer thickness is

smaller than the average wavelength in the layer(6.77 m), pure ray theo-

ry should not work we11. Even though the use of ray theory may not be

valid in interpreting the reflected fields, the ray theory based expan-

sion of the total reflection coefficient is still valid and we can still

evaluate each of the Sommerfeld integrals for the RS.
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Fi g. 3. 3 Typical reflecting rays in the geoacoustic model

85



MODEL I

1485rn/sco 1500 rn/s
It 485m/spo lg/CM 3

____ ___ ___ ___ ___ ___ ___ OCEAN

I C 2s'BOTTOM
5m PI 1.5 g/cm3

SUBBOTTOM

1495 rn/s C2~ 1600 rn/s
P2 1.8 g /CM3

Fig. 3.4 A thin layer-model with a 5-rn layer.
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*Fig. 3.5 The reflected fields for the Mobdel I at z zo 10 lm.
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Performing this analysis, we see that the primary reflection domi-

nates the total reflected field up to a horizontal range of 5000 m.

Fig. 3.6 shows a ray diagram of the primary reflections. There is no

caustic generated because of the thin layer. The specular and multiple

reflections are of about equal level , though both are substantially

smaller than the primary reflection for most ranges. As the incident

angle approaches grazing, the field amplitudes of all of the reflection

types become almost equal. Since the differences in ray path between

the different arrivals are very small for the chosen source-receiver

eonitry, i .e. the water column is twenty times thicker than the bottom

layer, their corresponding saddle points are very close to each other at

any given range. This is confirmed by observing that the specular and L

multiple returns exhibit minima which appear at the same incident angle

in their reflection coefficient plots (similar plots are shown in Figs.

2.5 ano 2.6), at closely located ranges near 800 m. A ray diagram of

the primary reflections is shown in Fig. 3.6.

We conclude from the above observations that the effect of the

thin layer, even with a rather strong sound velocity gradient (such as 2

s in our example), is weak and that the reflected field is dominated

by the subbottom with which the primary reflection has the strongest

interaction except at ranges associated with incidence very close to .

grazing.

L f
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*Fig. 3.6 A ray diagram of the primary reflections for the Model I.
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3.3.2 Model II: Small layer thickness with variable source-
-receiver heights

The N'dels lia and Uib, corresponding to two different sound ve-

locity gradients, 0.5 s-1 and 1.5 s", respectively(cf. Fig. 3.7),

are considered for two different values of source-receiver height. The

reflected fields at Z = 50 m and Z = 100 m for the first model are shown

in Fig. 3.8, while the fields for the second model for these values of Z S

are also shown in Fig. 3.9.

For both models highly oscillatory amplitude variation is seen at

close ranges (r < 50Or). This is due to the strong interaction between S

the specular and primary reflections. As the specular reflection ap-

proaches i ts minimum ampli tude, the effect of the mul ti pl es becomes

more pronounced and alters the curve of the total reflected field which "

is now dominated by the primary reflection.

Beyono a range of about 2000 m, the primary reflection decays with

range because the amplitude of the reflection coefficient for the prima- ..

ry reflection starts decaying as it approaches grazing incidence(cf.

Fig. 3.1(b) as well as the geometric spreading increases. The specular

reflection maintains a steady level due to a sharp increase in the re-

flection coefficient amplitude (cf. Fig. 3.10a) countering the loss due

to geometric spreading. In both models the primary reflection dominates

for most ranges at Z = 100 m.

However, at Z = 50 m in both models, the specular reflections

become dominant over the primary reflection at mid-ranges (2500-3500

N). This is due to the fact that when Z is reduced to 50 m, the water-

-path contribution to the geometric spreading becomes less, and thus the

_-AL_



MODEL 11 alb

co 1500 rn/s p
1485 rn/s Po g/cm3

____ _ _ ___ ____ ___ ___ ___ OCEAN

BOTTOM

c' 1.5 s

p 1.5 g/c rn

c 0. s-I1560 rn/s

SUBBOT TOM

1510 rn/s C2  1600 rn/s

P2= 1.8 g/cm3 0

Fig. 3.7 A small layer model s with a 50-n layer, and (a) g 0.5
S (b) g =1.5 sI
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Fig. 3.8a The reflected fields for the Model Ha at z zo 100m.
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Fig. 3.8b The reflected fields for the Model Ha at z +o 50m.
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Fig. 3.9a The reflected fields for the Model Ib at z + = loani.
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Fig. 3.9b The reflected fields for the lbdel lib at z * = 50 m.
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contribution of the layer-path to the total geometric spreading is more

emnphasizea.

The sharp peak in the primary reflection seen at range 1500 m in

Fig. 3.8b (odel Ila) indicates caustic formation near the ocean bot-

tom. However, as Z increases to 100 m, it disappears. This disappear-

ance of the caustic is due to the presence of the subbottom and there

exists a caustic cut-off between these depths. Section 4.2 will treat

this problem in more detail.

Due to the small velocity gradient in Model Ila the field contrib-

ution from the multiples is small even at long ranges (r > 3000 m).

However, Wien the velocity gradient is increased to 1.5 s - 1 , as shown

in Model lIb, their contribution becomes one of the major ones even at

relatively close ranges for small Z (cf. Fig. 3.9b). Therefore, a large

sound velucity gradient at the bottom and a small Z contribute to a

larger multiple field amplitude.

3.3.3 Model III: Thick Layer with Small Gradient

Two different profile shapes are consider in this model: l/c 2

ana c 3-linear(cf. Fig. 3.11). As discussed in Sec. 3.2.2 and shown in

Fig. 3.2, a small reference gradient(.5 s'lin this model) creates only

small differences in the profile shapes. However, even a small differ- 0

ence in profile shape can make large differences in the geometric

spreaain at long ranges. The large layer thickness makes it possible

to form a caustic extending into the water column(cf. Fig. 3.12). In - S

this case the total reflected fields are characterized by the fields

beyond the caustics formed by the primary and multiples(cf. Fig. 3.13),
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MODEL ItI a, b

1485 rn/s \ co= 1500 rn/s

c' =0.5 sr
500Cm 'P1 1.5 g/CM 3

Fig. 3.11 A thiick layer model with a 500-rn layer where g =0.5 s-1.
(a) The 1/c _I1 inear and (b) the c'- linear profiles.
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Fig. 3.12a A ray diagram of the primary reflections for the Model
IIla.
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Fig. 3.13a The reflected fields for the Model 1I1a at z z =
100 m.
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while the overall field amplitudes of all reflection types are very

similar otherwise.

These strongly interfering primary and multiple reflection ampl i-
0

tudes, which result from caustic formations, are due to multi-saddle

point contributions(cf. Sec. 2.3.2). The difference in locations of the

appearance of these features are very clear in both profile types.

However, the patterns of the amplitudes of both primary and multiples

are almost identical in both profile types. The similarity in the field

amplituaes near the caustic will be discussed in Sec. 4.3.

3.3.4 Model IV: Thick Layer with Large Gradient

The sound velocity gradient at the top of the layer varies strong-

ly in this model, given that the boundary conditions at both of the

interfaces are the same(cf. Fig. 3.14). As shown in Figs. 3.15 and

3.16, the caustic formations of the primary reflections are quite dif-

ferent in the 1/c 2 and c3 -linear layer cases. In each case the

interference patterns due to multi-saddle points characterize the be-

haviors of the primary and multiple reflections(cf. Fig. 3.17). In the

I/c 2 -linear case shown in Fig. 3.15 the caustic has two branches and a

cusp at the point where they meet. The interference of the primary

reflections only takes place within the ranges surrounded by the caustic 0

branches. In the case of the c3 -linear profile, there is only one

caustic branch whirh extends into the water column up to the caustic

cut-off point (cf. Sec. 4.2). For large layer thickness, the caustic

branch can extend to large distances above the ocean bottom. Thus the

interference of the primary reflections can extend to longer horizontal
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MODEL IV a, b

Co  1500 m/s
1485 m/s Po : 1 g/cm 3  0

a b

C - 1.5 "  •
\\ P,- 1.5 g/cm 3

500m

2400 rn/s
2235 m

P2 = 1.8 g/cm 3

Fig. 3.14 A thick layer model with a 500-m layer whtere g = 1.5 s- 1 .
(a) The 1/c2-linear profile and (b) the c3 -iinear profile.
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Fiy. 3.15 A ray diagram of the primary reflections for the W~del IVa.
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Fig. 3.16 A ray diagram of the primary reflections for the M'del IVb.
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ranges until the subbottom reflection terminates this behavior(cf. Fig.

3.16).

Comparing the reflected fields generated from both cases with dif-

ferent sound velocity gradients, we observe that the total field from

odel IVb(cf. Fig. 3.17b), which has a larger gradient at the bottom

than Model IVa(cf. Fig. 3.17a), shows lower amplitude levels beyond the

primary caustic range. One may expect from our discussion in Sec. 3.2.1

that the primary reflection for a geoacoustic model with a larger sound

velocity gradient should have a larger amplitude. However, for our

typical source-receiver geometries, i.e. Z > 100 m, the condition given

by Eq. (3.24) is violated and the water-path contribution to the total

geometric spreading becomes substantially larger than that of the layer

as the eigenray approaches grazing incidence.

Since Jcf. Eq. (3.24)] of the primary eigenrays reaching long

ranges in odel IVb are smaller, an even greater water-path contribution

is added to the total geometric spreading. As a result, the primary

reflection from Model IVb has less amplitude than that of Model IVa.

Furthermore, since the primary reflections are the dominant contributor

and control the overall level of the total reflected fields for both

cases, the total reflected field from Model IVb shows less relative

amplitude even with the greater velocity gradient near the bottom.

ultiples, on the other hand, effectively reduce geometric spread-

ing due to both the water-path and the layer-path, thus multiple con-

tribution becomes larger from the geoacoustic model with a larger sound - 0

velocity gradient at the bottom. The multiple reflections also form

similar interference patterns to the primary reflections and are respon-
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Fig. 3.17a The reflected fields for the Mobdel Hva at z ' = 100
M.
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sible for the highly oscillatory patterns in the total reflected fields

observed at long ranges beyond the primary caustic ranges for both mod-

els.
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Chapter 4: Analytic Studies on Caustics

Due to the limitations of the method of steepest descents, the

analytic evaluation of the reflected fields near caustics was excluded

in Chapter 2. However, understanding the parametric dependence of the ........

caustic shapes and the strength of the field near the caustics can help

recover geoacoustic properties of the ocean bottom[2]. In this chapter

we shall focus on this subject and discuss the caustic behavior, pri-

marily in a qualitative manner, for the proposed sound velocity profile

shapes.

4.1 The caustic equations for the proposed geoacoustic models

Brekhovskikh[l) derived the equations of caustics formed in a

homogeneous upper half-space overlying an inhomogeneous hal fspace for

the n2 -linear and c-linear profiles where the sound velocity is con-

tinuous across the boundary. This section is an extension of his work

to derive a caustic equation for the case of the c3 -linear profile

which provides a more realistic profile shape. The equations of cause.

tics for all three cases are derived for the n-th multiples and there-

fore they are more general forms than those of Brekhovskikh. In this

section we shall neglect the effect of the subbottom on caustic formation

* The results given in Ref. 1, Eqs. (46,21) through (46.23) appear
to have errors. Our corrected formulas are given in Sec. 4.1.2
of this chapter.
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and will reserve a discussion of that subject for Sec. 4.2.

The cases treated in this chapter are limited to the geoacoustic

models where there is no discontinuity in sound velocity at the ocean

bottom interface. Even though we have chosen less comprehensive geo-

acoustic models than those we have used earlier in order to make the

algebra easier, we may still learn a great deal about the caustics from

these special cases for the various inhomogeneities in the layer.

4.1.1 The caustic equations for the c3 -linear profile

The conitions for the caustic in the water column are given by

Eqs. (2.40) and (2.44) when ps is such that the left hand side of Eq.

(2.44) vanishes. After Eqs. (3.15) and (3.16) are evaluated at the

water-bottom interface and substituted in Eqs. (2.40) and (2.44) respec-

tively, we obtain

PC (z + z + r+ 2n (1 -2 b 2/3/2 (2P2 0 (4.1)
" Y- Z rc a3 Pc Pc 3 3 3

z + z 6n 2  3) 21 2 2/3,-/2
-3 _- - -2 c " PM ) 1 0 (4.2)
coY0  a3 pc

where Pc is the horizontal slowness which satisfies the above equa-
•

tions, a3 ano b3 are the coefficients in Eq. (3.13), and r c is the

caustic range. If the sound velocity in the lower half-space is given by

3- 3

c (z) = a 3z + cg0 (4.3)
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where c 0 is the sound velocity in the upper half-space, Eqs. (4.1) and

(4.2) may be reduced to

PC 2(z2 (1 2 1/2 -2 2 2rC =0 (z z O  UpP C (4.4)
T O 0 a C P~c0  C 0)

z + zo0 6n 2p 2 2)1 p 2 2 -1/2 0(45

6 3 2 co(1 - Pco )  = 0 (4.5)
Coy 0  a3p

Rewriting yo and Pc in terms of the grazing angle a in the me-

dium containing the incident wave, we then obtain

Z0)Coto 2cn 2 + 1) (4.6)
3 CO"'a

z + z = a3 sin2 (2 - Cos 2a) (4.7) -
3COS a

Solving for cos2a from Eq. (4.7), we obtain

cos~ 3 nc3  4a3  )1/2  (

a3(Z + zo) + 6nc 0  3nc0

Since a3 < 0, there is no limit on z + z0 and the caustic branch extends

to infinity in the upper hal fspace. Since cos2a < 1, we must choose

the minus sign for the square root for any a3 (z + z0 ).

Therefore, the location of the caustic may be obtained for a given

z ana z0 by substituting
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03Arccos n 0 +-- (3 -(1 3 4 z+a)12]/ 49

3 0a3(z + zo) +6nc 0  3nc

into Eq. (4.6) in order to obtain the caustic range r c . Fig. 4.1a shows

a plot of r c vs. z for a source height of 50.m, c o = 1500 n/s, n = 1

(primary reflection) and a3 = -6.75 x 106 m2/s 3 .

3

4.1.2 The caustic equation for the 1/c4-linear profile

The caustic equation in the water column for the 1/c2-linear pro-

file may be similarly derived and it is expressed by the following 0

equations:

rsi3.2a 2(z + 2 A I112/1j2

Arcsin Li * (1 - n (4.10a)

rc - sin2  cos 2  (4.10b)

a1 c0

where o is the grazing angle of the ray in the water column and al is

the coefficient of z in Eq. (3.1). For a given z and zo, one may

obtain a from Eq. (4.10a), and substitute it in Eq. (4.1Cb) to obtain

the caustic range r c . Since a has two values for a given z, z0 and

a1 , then rc does also. This is a very important characteristic of

the caustic shape generated by the 1/c2 -1inear profile whose caustic

branches never extend to positive infinity in the upper halfspace.

Instead they form a cusped caustic known as a butterfly caustic(cf.

Figs. 4.2a,b).
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At the cusp has a singl e val ue satisfying the condi tion,

2a (z + z ) c 2 n 1 (4. 11 a)

Th us, we ob ta in from Eq. ( 4. 10)

a =-r6 32 (4.11b)
C2a

Equation (4.11) indicates that the grazing angle for the cusp is inde-0

penoent of z + zo and a1,, and is always 30 degrees. The regions of

wh~J'ich correcpond to separate branches of the caustic in the water

column are given as

on the branch 2-3: a,< a < r/6

on the branchl1-2: ff/6 < a< a

where a2=Arcsin 1 11;(1 - 2 c2/n)12(4.12)

4.1.3 The caustic equation for the c-linear profile

The derivation of the caustic equation for the c-l inear profile is

straightforward and the result is given by

- a2nc rc (4.13)

00
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where a2 is the coefficient of z in Eq. (3.7).

4.1.4 Caustic equations for small grazing angles

Fig. 4.3 shows the curves of the caustics in the water column for

the three different profile shapes given that all of their sound veloc-

ity gradients at the ocean bottom interface are fixed at 1 sec " 1 (cf.

Fig. 4.4). Notice that all of them have very similar curves (consider-

ing the upper branch of the 1/c2 -_inear profile) especially near the

ocean bottom. This is due to the fact that all of the caustic equations

become identical as the grazing angles become very small. If small

angle approximations are substituted in the pairs of caustic equations,

Eqs. (4.6) and (4.7), and Eqs. (4.10a,b), they can be reduced to (Eq.

(4.13) is exact):

2_a 1c2 r2for the 1/c2 -linear profile: z + z0 =- (upper branch (4.14)

for the c3 -1inear profile: z + z -- a r2  (4.15)24nc0 c

where a is approximated by

(z + z,,)c '
CL 2nc 0 1 (4.16)

witth c' = dc 1  ; = 1, 3
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Fig. 4.3 Caustic curves of the (1) 11c 2, (2) c and (3) c3-linear
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Fig9. 4. 4 The sound velocity profiles of the 1/c2 , c and c3-l inear
with depth for the same velocity gradient g 1 s-1 at the
bottom.
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For the same gradlent at the ocean bottom (z = 0), a and a may be

given in terms of a2 as

30
a= 2.

a -3a 2/c .

If a1 ana a3 are substituted in Eqs. (4.14) and (4.15) respec-

tIvely, they may be identically reduced to Eq. (4.13) for small grazing

angles associated with caustics formed near the ocean bottom. Since

small a corresponds to small c'z 0 [cf. Eq. (4.16)], we can conclude that

the caustic curves near the ocean bottom(z is also small ) are controlled

by the gradient of the profile near the bottom, not the overall shape of

the profile. This observation is particularly important when the sub-

bottom in present since the caustics in the water column are formed only . P

near the bottom for this case, which is discussed in the next section.

4.2 The effects of the subbottom interface on the caustic

in the water col umn

In Section 4.1 the inhomogeneous medium was treated as an infinite

hal fspace for which caustics are formed by purely refracted rays. How- -

ever, the presence of a subbottom reflector in the geoacoustic models

under consideration serves to eliminate rays with certain ranges of ho-

rizontal slowness p from caustic formation. Brekhovskikh has delineated

the regions of slowness for different branches of the caustics for the

n2 -linear and c-linear cases. The presence of the subbottom simply
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sets the limits on the regions of slowness forming the various caustic

branches, but does not create additional branches.

For the case of the 1/c 2 -linear profile, the caustic branches will

be eliminated in numerical order as labeled in Fig. 4.2a as the rays

forming the caustic start reflecting off the subbottom interface. For

the other two profile shapes, which share similar caustic curves with

only two branches, the caustic branch extending into the water column

away from the bottom will be eliminated. The order of disappearance of

the caustic branch is again indicated by the numbers labeled along the

caustic branches in Fig. 4.1a.

Thus, the branch of the caustic extending into the water column is

cut off as the last caustic-forming refracting ray interacts with the

subbottom. The location of the caustic cut-off may be easily obtained

by substituting the p of the last turning ray into the ray equation, say

Eq. (4.1) for c3 -linear profile, to obtain rc , and then substituting

rc into the equation of the caustic to find the receiver depth z for a

given zO. Figs. 4.5a,b show ray trace diagrams with and without the

subbottom fur the c-linear profile in the lower half-space. Fig. 4.5a_

clearly shows the caustic cut-off in the water column Where the rays

start radiating into a wedge-shaped region without crossing each other.

4.3 The fields near caustics

As discussed in Chapter 2, the asymptotic solution derived in that

chapter is not valid for the fields near the caustics where 0" in Eqs.

(2.41) ano (2.42) becomes very small and vanishes completely at the

caustics. The fields in these regions can be evaluated by numerical
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integration methoos. Analytic solutions to such fields also exist with

some limitations. Brekhovskikh's caustic correction to ray theory [3]

is only valid for the fields very near the caustics. A uniform asymp-

totic solution such as the one by White and Pedersen[4] continuously

valid across the caustic involves a great deal of mathematics, and it is

rather difficult to obtain any physical interpretation of the fields.

In this section we shall emphasize the physical interpretation of

the various caustics resulting from the different profile types discuss-

ed in Sec. 3.1. The shapes and locations of caustics in the water col-

unm have been discussed in Secs. 4.1 and 4.2. Our main interests in

this section are to evaluate analytically the strength of the caustic

ano geometric decay of the fields near the caustic as one moves away

from the caustic with horizontal range. Therefore, analytic solutions

derived by Brekhovskikh which are only valid near the caustic serve our

neeos, and we shall discuss the above problems in terms of the three

profile types having the same sound velocity gradients at the bottom(cf.

Fig. 4.4).

We have modified Brekhovskikh's analytic solution to include the

Langer reflection coefficient Rn (p) to the fields near the first order

caustic (i.e. dO/dp = d24/dp2 = 0 but d3A/dp3 A 0 at p =p

to obtain

" 5/6 1i/6e ir/4 (Pc 112--F R n(Pc) d3€ (c 1"-1/33

Pn eO P Ai(q) (4.17)
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wiere Ai is the Airy function whose variable q is given by

q = s9n["'(pc)] 21/3 d4(pc) -/3r r (4.18)dp3  r c ) (.8

The value of Pc varies depending on the profile shapes and the

source-receiver orientations. Thus, the coefficient of the Airy func-

tion in Eq. (4.17) involves many parameters to be examined. However, as

aiscussed in Sec. 4.1.4, if the caustic fields of interest are relative-

ly near the bottom, the variations in pc, r and Rn are very small since

the profile shapes at the top of the layer are very similar. Therefore,

the most sensitive quantity is 1 II1/ 3 which also plays an important -

role as the weighting factor in the argument of the Airy function, which

dominates the variation with range of the field amplitude near the caus-

ti c.

In order to evaluate the relative strength of the caustic and the

aecay with horizontal range, it is useful to overlay the Airy function

multipliea by id3A/op 31I1 / 3 evaluated at the pc corresponding to each

profile shape, and plotted against the horizontal distance away from the

caustic. For two different values of the source and receiver heights, z

+ z0 = 250 m and 50 m, Figs. 4.6a,b show two sets of curves of the men-

tioneo quantity for the three different profile types based on the geo-

acoustic models shown in Fig. 4.3. The frequency of the harmonic point

source is 220 Hz.
•

For z0 = 50 m, at z = 0 m all three caustic curves are very

similar (cf. Fig. 4.3) and the quantities of 14"'1"/ 3 Ai in Fig. 4.6b
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also show close similarlities among the three profile types. On the

other hand, at z = 200 m I1"'I- 1/3Ai for the c and c3 -linear profiles

similarly have greater amplitudes and spatial oscillations than at z = 0

m, but the behavior of the 1/c 2 -linear profile remains almost the same

at both of the depths. Even though the caustic curves in Fig. 4.3 show

well separated traces near z = 200 m, one can observe a similarity bet-

ween the c and c3 -linear profiles in terms of the radius of curvature

while the curve for the 1/c2-linear profile yields a sharper turning.

The difference in the field strength can be physically explained 5

by ray interpretations as follows. Let us consider rays forming two

types of caustics in a homogeneous medium. One of them is formed along

a curve of a small radius of the curvature and the other is formed along 0

a large radius of the curvature as shown in Figs. 4.7a and 4.7b, respec-

tively. As seen in both figures, the rays forming the caustic with the

larger radius of the curvature are more densely interacting with each 5

other near the caustic. This results in larger and highly oscillatory

interference field amplitude patterns near the caustic as observed in

Fig. 4.6a for the c and c3 -1inear profiles. S

We can concluae from the above observations that when the caustic

curves are similar, the associated fields near such caustics are also

similar and they are more directly affected by the curvatures of the 0 -

caustic curves than by the shapes of the profiles.

1
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Chapter 5: Analysis of Experimental Data

We have examined various geoacoustlc models using an asymptotic

expansion method based on the Langer reflection coefficients in Chapter

3. In this chapter we shall examine two sets of experimental data ob-

tained from field experiments and estimate the geoacoustic properties of

the ocean bottom from these data using the asymptotic expansion method.

After finding geoacoustic models such that the resulting total fields

agree with the measurements satisfactorily, we shall demonstrate the

energy partitioning of the eigenrays with horizontal range, so that the

physical mechanisms causing the real fields may be understood. We shall

also discuss the effect of source/receiver geometry on the determination

of geoacoustic models.

Data Set 1: Icelandic Basin

Field measurements were taken in the Icelandic Basin (59 31.0'N,

17 20.8'W) by Frisk and his co-workers[I]. The total acoustic pressure

fiela due to a 220-Hz harmonic point source towed at an elevation of 157

m above the ocean bottom(cf. Fig. 1.2) was measured by a receiver moored

at 54.6 m above the bottom. It has been found by Frisk[1](with

modifications by the author) that the geoacoustic model shown in Fig.

5.1 seems to provide the best synthetic fields which match with these

measurements. Both synthetic and real data are shown in Fig. 5.2.

We next generate reflected fields based on this geoacoustic model

and group them into three ray types: specular, primary and multiple
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131



1486 m/s Cc) 1496 m/s

Po =lg/cm 3

c' 2.768 s'
38 m PDI 1.6 g/cm

C= 1700 m/s
1591.2 m/s P2 1.6 g/cm 3

Fig. 5.1 Geoacoustic model for the Icelandic Basin.
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Fig. 5.2 A comparison between experiment and asymptotic method using
the geoacoustic model shown in Fig. 5.1. The source
frequency is 220 Hz and the source and receiver heights are-
157 m and 54.6 m, respectively.
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reflections. As shown in Fig. 5.3, the primary reflection clearly domi-

nates the total reflected field (excluding the direct field) for ranges

up to 5 km even though the sound velocity gradient is the largest we

have examined so far and one would expect a greater contribution from

the multiples(cf. Sec. 3.2.1). This is due to the fact that the water

column occupies a large portion of the total ray path even for the mul-

tiples(cf. Fig. 5.4), and the condition given by Eq. (3.24) is violated

(the R. H. S. of Eq. (3.24) is about 30 m, while (z + zO) is 211.6 m).

Therefore, although the geometric spreading due to the layer-path

is relatively small for the steep sound velocity gradient at the bottom,

this does not contribute much to reducing the total geometric spreading

of the multiples. Given an insignificant contribution to the field

amplitude from the steep sound velocity gradient at the bottom, the

primary reflection which has the maximum reflection coefficient ampli-

tuoe after critical incidence dominates the total reflected field. -

Basea on these observations we can also conclude that the sound

velocity at the top of the layer and the gradient in the layer, which

most affect the behavior of the primary reflection, particularly its 0

geometric spreading, are mainly responsible for the nature of the total

reflected field at these ranges. The geoacoustic model shown in Fig.

5.1 is the result of using such modeling criteria to determine the sound - 0

velocity at the top of the layer and the gradient in the layer to im-

prove the agreement between the measurement and synthetic fields.

The fact that in this case geometric spreading is heavily depen- 9

dent upon the water-path and not the layer-path makes the identification

of geoacoustic models somewhat more difficult, particularly the shape of
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135



10
* ~ -162-

00

LO

*3 w

* -0

z

3136



-30-

-0 -40-

-60-

<-70-
uj

LL .90-

CC-100

0 10;0 . 20,00, 3000 000O

RANGE CM)

-30-

'o -40-

* < -70-

* -100
0 1000 2000 3000 4000

RANGE (M)

Fig. 5.5 Sythetic data for the (a) 1/c2 -linear profile and (b)
c -linear profile instead of the c linear profile in the
layer shown in Fig. 5.1.
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S

the profile associated with the sound velocity gradient at the bottom.

This is not the same as saying that matching the synthetic fields to the

measurements is difficult.

As an example, Fig. 5.5 shows two sets of the total field: one

from the 1/c 2 -linear profile and the other from the c3 inear pro-

file for fixed endpoints of the sound velocity in the layer. It is "

evident that all of the total fields generated from the geoacoustic

models with different profile types, including the one shown in Fig.

5 .2, have good agreement with the measurements. .

Therefore, when the source and receiver are placed at relatively

high elevation above the bottom so that the water-path dominates the

total geometric spreading, the total fields measured at these receiver 0

locations are insensitive to the shape of the bottom layer profile, and

thus the identification of this property of the bottom structure becomes

very difficult. In the next example, we shall demonstrate that the .

effect of the profile shape is indeed significant when the source and

receiver heights are reduced.

Data Set 2: Hatteras Abyssal Plain

We next examine experimental data collected in the Hatteras

Abyssal Plain (34 00.0'N, 67 0O0.0'W) with the same experimental , •

configuration as in the previ- ous example except that the source and

receiver heights are now 180 and 2.7 meters, respectively. The

estimated geoacoustic model for this region is shown in Fig. 5.6. where t 9

the average water sound velocity was used from the model by Frisk[2].

The measurement of the total field is shown along with the synthetic

field based on our geoacoustic model in
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Fig. 5.7. Due to the comparable size of the source plus receiver

heights and the sediment layer thickness(c.f. Ray trace diagram in Fig.

5.8), this example demonstrates a sensitive dependence on the shape of

the sound velocity profile in the layer despite the small reference

sound velocity gradient(dc/dz = 1 s -  as opposed to a value of nearly

3 s- 1 for the previous example).

Except at ranges near r = 2000 m, both real and synthetic fields

agree well. This agreement is especially good at very long ranges as

the result of the c3 -linear profile being used for the sound velocity

in the layer. If one instead takes the profile in the layer to be

1/c 2 -linear for the same fixed endpoints, the resulting synthetic

field shows a very different behavior, as seen in Fig. 5.9. We note

that the large peak at and just beyond the caustic has become narrower.

As shown in Fig. 5.10, this is due to there being a narrower horizontal

range band in which the primary reflections can interfere with each

other.

The profile-dependent differences in the reflected field ampli-

tudes seen at long range can be analyzed by comparing their grouped

reflected fields, shown in Figs. 5.11 and 5.12 for the c3 and 1/c2 -

-linear profile shapes, respectively. Except near the caustic ranges,

the gross variations of the field amplitudes of each reflection are 0

alr ost the same. However, the total reflected field amplitude behaves

somewhat differently in each case with respect to that of the primary

reflection. This inaicates that for each reflection there are more ..

sensitive variations in phase rather than in amplitude due to the

variation in profile shape.
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Fig. 5 .6 Geoac-, c model for the Hatteras Abyssal Plain.
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Fig. 5.11 The reflected fields for the geoacoustic model shown in Fig.
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0
ien the total reflected fields interfere destructively with the direct

field at long ranges(r > 2800 m) as shown in Fig. 5.13, one sees a rapid

amplitude decay with horizontal range in the measurement. For the

1/c2 -linear profile, the total reflected field interferes construc-

tively with the direct field at these ranges as shown in Fig. 5.14. One

sees here that the change in profile shape makes the greatest contribu- "

tion to the phase variations, and not to the amplitude, which can result

in a large difference in the total field as the reflected fields inter-

act with the direct field.
0

Sunary:

In both examples, the primary reflection is found to be the major .

contributor to the total reflected field. In the first case, the sound

velocity gradient at the bottom is large but the value of (z + z0 ) is

also large. In the second case, the sound velocity gradient at the bot- -.

tom is small but the value of (z + zO ) is relatively small. Due to

the large water-path geometric spreading in the first case and the small

sound velocity gradient at the bottom in the second case, the multiple

contributions become small. Also, the primary reflection coefficient

amplitude remains large up to the range of interest so that the specular

reflection coefficient amplitude stays lower for all ranges in both

cases(cf. Fig. 3.10 for example). Therefore, in general, a large value

for (z + z0 ) enhances the contribution from the primary reflection at

1 on9 ranges.

It is also found that the major effect of the shape of the profile

in the bottom layer is on the phase variation of the reflected field
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which leads to the characteristic gross features of the total field

amplitude as the direct water field is coherently added to the reflected

field. However, this effect would be negligible if the water-path domi-

nateG the total geometric spreading as the source and receiver are

placed at high elevations above the ocean bottom.

Geolobical data near the experimental sites:

In order to relate the physical features of the geoacoustic models

useo in this chapter to the actual geological properties of the exper-

imental sites, seismic and core sample data from the Deep Sea Drilling

Project(D.S.D.P. ) were searched. The major objective was to identify

the subbottom reflector in our geoacoustic models from the D.S.D.P. data.

The seismic reflection data at 60-320 Hz taken near the D.S.D.P.

sites 116 ano 117, which are the closest locations to the experimental

site, indicate the first reflector depth varying fron 150 to 275 meters

even though their physical locations are very close to each other[3].

It is therefore inappropriate to extrapolate the depth of the first re-

flector, namely the subbottom interface, from these data which were col-

lectea at least 2.5 degrees in latitude away from the actual site. The

presence of a subbottom reflector at 38 meters below the waterbottom

interface at the experimental site was confirmed by 3.5 kHz normal inci-

dence records taken at the site. Also yellow mud, and yellow mud and

shells were collected from 19-foot and 25-foot core samples,

respectively, at two different locations within the area[l].

In the case of the Hatteras Abyssal Plain the depth of the sub-

bottom interface agrees reasonably well with that of the first acoustic
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horizon AT from the drilling site 387 on the western Bermuda Rise[4].

Horizon AT correlates approximately with the top of a sequence of mid-

ale Eocene siliceous turbidites (lithologic sub-unit 3A) which underlies

upper Eocene radiolarian mud (Unit 2). Other acoustic reflectors were

also well defined and their geological correlations could be determined

from the core samples with reasonable confidence. The subbottom depths

resulting from seismic reflection and refraction profiling by Emery et.

al .15i and Houtz and Ewing[6] near the experimental site were 130 meters

ano 215 meters, respectively, and consistent with Frisk's estimate of

160 meters. Therefore, it suggests that the subbottom interface may

correspond to the first acoustic horizon AT observed near the drilling

site. The information on geological properties of deep ocean sediments

is often not available; thus performing the bottom acoustic experiments

near well logged D.S.D.P. sites may increase confidence in geoacoustic

modeling and testing of theoretica) resul ts.
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Chapter 6: Contributions and Related problems

In this final chapter we shall summarize the results obtained in

Chapters 2 through 5 and discuss the contributions made here to the

field of ocean bottom acoustic interaction. We shall also discuss other

related problems raised during this research and possible techniques to

solve them.

6.1 Contributions

Most of the mathematical discussion in this thesis was devoted to

the analytic evaluation of ocean bottom reflected acoustic fields given

in the form of the Somerfeld integral. Within the formulation we used

realistic geoacoustic models and examined the sensitivity of the fields

eneratea to the geoacoustic parameters.

The asymptotic method for approximating the Somerfeld integral

was derived in Chapter 2. The total reflected fields were given by a

series of asymptotic solutions to the fields associated with eigenrays.

Since the reflection coefficients as weight factors in the integrand

were derived analytically based on realistic geoacoustic models using

Langer uniform asymptotic approximation, the resulting asymptotic solu- .

tions were also analytic expressions for these geoacoustic models.

The accuracy of the method was confirmed by comparison with numer-

ical Hankel transform results except in regions where critical incidence

ano caustic formation take place. We have also derived the asymptotic

expressions based on the Langer reflection coefficients for the inter-
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face wave propagating along the subbottom interface corresponding to the

n-th oulti pl e refl ection.

In Chapter 3, a new canonical analytic expression for the sound

velocity profile was introduced. We demonstrated in Appendix D that a

sound velocity c expressed by c3-1inear in depth provides a very simi-

lar profile shape to the one observed from field measurements. Using

the analytic expression for the phase integral for this profile type, we

obtained complete analytic solutions to the reflected fields based on

this geoacoustic profile shape as well as for the cases of the 1/c2  
-

and c-linear types.

We then applied the above results to examine several types of

geoacoustic models varying in layer thickness, sound velocity gradient,

profile shapes and source-receiver geometry and demonstrated complex

features of energy partitioning of eigenrays with horizontal range.

Because of the accuracy of the plane wave reflection coefficients we

aerived, our method should be valid even for geoacoustic models with a

thin layer(i .e. thickness less than a wavelength) where ray theory is

believed not to be valid.

The effect of the sound velocity gradient at the bottom on the

geometric spreading for near-grazing incidence was qualitatively dis-

cussed. The conditions under which the layer-path of the n-th multiple p

dominates the total geometric spreading were also derived for this

case. It was proved that the differences in profile shape were minimal

for a small gradient and/or a small layer thickness for fixed endpoints 0

of the sound velocity in the layer. However, in the case of a large

layer thickness and small gradient, slight differences in profile shape
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caused relatively large differences in caustic position though the field

amplitudes were very similar including the fields near the caustics.

2In Chapter 4, we derived the caustic equations for the 1/c and

c -linear profiles. We found that the cusp of the caustic from the

1/c 2 -lnear profile always corresponds to a grazing angle of W/6 inde-

pendent of the source-receiver geometry and the sound velocity gradi- 0

ent. We also demonstrated that the leading term of the asymptotic ex-

pansion for the fields near the caustic is directly influenced by the

amount of curvature in the caustic curve...

Two sets of field measurements were discussed in Chapter 5. The

energy partitioning of the eigenrays was analyzed and it was found that

the primary reflection dominated the total reflected field at most 0.

ranges for both cases. We also discussed the accuracy obtained in mod-

el ing the ocean bottom relative to the geometric orientation of the

source ano receiver for given bottom structures. o

While the density and sound velocity discontinuities at the bound-

ary interfaces determined the gross features of the amplitudes of the

reflected fields, sensitive ray-phase variation due to the shape of the o

profile in the layer became important as the direct field was coherently

addea to the total reflected field. However, when the source-receiver

heights were large so that the variation of the water-path with respect .. 0

to that of the layer-path became large, the total field amplitude became

insensitive to the profile shape. The discussion on this issue will be

continuea in the next section. .__L

The group of acoustic properties of the bottom which affect the

reflected fields given in this thesis is clearly not complete. We have
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just started to deal with mathematical models representing the basic

acoustic properties of a horizontally stratified bottom that one may

find in the real world. Without even complicating these models there

are still many problems remaining. A survey of such problems will be

discussed next.

6.2 Related problems

Additional aspects of acoustic bottom interaction will be dis-

cussed in this section. Some of these are experimental subjects, others

are purely mathematical.

6.2.1 Suggested deployment depths of the receiver system

and an iterative inverse scheme

We extend here the discussion given in Chapter 5 and propose a

simple scheme to recover the acoustic properties of the ocean bottom

using a forward modeling technique such as the one developed in this

thesis. We have concluded in Chaps. 3 and 5 that in order to model the

bottom accurately, including the profile shape, one should minimize the

sum of the source and receiver heights to enhance the layer-path over

the water-path.

This indicates that it might be desirable to make a preliminary

estimate of the layer thickness by means of standard vertical profiling

(such as measuring the travel time of a pulsed signal propagating normal

to the ocean bottom), and then to deploy the system of receivers accord-

ing to the estimated layer thickness for oblique incidence work. One

receiver should be deployed at the depth where the source-receiver sum
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does not exceed the layer thickness. The other should probably be

located at a higher elevation off the bottom. We realize from the dis-

cussion in Sec. 3.2.1 that the source-receiver sum should be determined

from the souna velocity gradient at the bottom, not from the layer

thickness. However, since this quantity is not known at this stage of

the experiment, estimating the lower end of the sum of the source and

receiver heights from the layer thickness is the best one can be expect-

ea to do .

We have seen that the fields measured at long ranges by the top

receiver are dominated by the interaction between the refracting rays of

primary reflection and the direct water-path field (the other types of

reflections are suppressed by their greater geometric spreading). This

inaicates that it may be possible to match the sum of the direct and

primary reflection to the gross feature of the real data at long ranges

by using an even simpler geoacoustic model with a monotonically increas-

ing sound velocity profile (of the c-linear type for example) in the

lower hal fspace without the subbottom interface. As both models (with

ana without the subbottom) show reasonable agreement, we are obviously - "

measuring most sensitively the sound velocity and sound velocity gradi-

ent at the water bottom interface. The success Frisk had in obtaining a

geoacoustic model using the parabolic equation method[lj can be explain-

ea by these same arguments, since specular reflection was not explicitly

incluea in those calculations and the effect of the subbottom (they

modeled It as a soft boundary) was negligible at long ranges.

By matching the fields at both receivers at short ranges with the
specular reflection included (but not multiples), one fixes the subbot-
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. tom interface. Finally, by matching the fields at long ranges at the

-' lower receiver with multiples now included, one can "fine-tune" the pro-

file shape as well as the sound velocity discontinuity at both inter-

" faces.

Of course, the actual search for geoacoustic models which match

the data is not quite as straightforward as the procedure described

here, which is based on purely mathematical models. It may also prove

impossible to suspend the source very close to the bottom to see layers

of small thickness.

6.2.2 Application of the Langer reflection coefficient

to a numerical method

It was noted that the evaluation of the plane wave reflection co-

efficient via the propagator-matrix method involves some difficulties,

both in selectin9 a step size for the profile and in computing time[2].
I i

As shown in Fig. 2.2, the accuracy of the Langer reflection coefficient

is quite gooo and as long as the geoacoustic model is of the type con-

sidered in this thesis, the (total or partial) Langer reflection coeffi-

cient could be substituted in the Sommerfeld integral to be evaluated

numerically by the Hankel transform method[3,4]. This scheme should

also be a good alternative to the asymptotic method introduced here when

it fails at critical incidence and caustics where more accurate fields

are desirable.
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6.2.3 A partial expansion of the total Langer reflection
coefficient

We expandeo the total Langer reflection coefficient before the

evaluation of the Sommerfeld integral. This approach was suitable to 0

distinguish one ray-type field contribution from the others. However,

it is not necessarily the most efficient method for computing the total

reflectea fielas. Specifically, the multiple contributions involve

long, tedious summations, and we are often only interested in the total

contribution of the multiples, but not in the separate multiple reflec-

tions.

Therefore, the following expansion is suggested instead:

R(p - (2) - ( 4(A1242) (2)

2)(2) *()2 T 2A0  + BZ ~(A + B () ZA(2) 8(2

4' B~ 1 ~i(A2" - B-2 -

1- 0 0 H H

(A(Z) B(Z))(A~1l) BM1 ) -(A~' + B ')(A~ 2  B ()
0 0 'H H 0 0 H H

(6.1)

where the first and second terms represent specular and primary reflec-

tions respectively, as calculated in Eq. (2.27), but the last term is a

composite expression of the rest of the multiples. "

The first two terms may be substituted in the Sommerfel d integral

to be evaluated asymptotically; these provide ray-type field solutions.

However, the last term involves singularities for which the normal mode

representation may prove ideal. The evaluation of the total contribu-

tion due to the multiples would then involve locating residues in the
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-V ,
complex p-plane. This procedure, though it may involve numerical diffi-

culties, would probably be more efficient than the one used in this the-

sis, particularly when a large number of multiples contribute to the

fi el (.

6.2.4 Limiting cases of interference head waves[2] 0

In the discussion of interface waves in Sec. 2.3.3, we argued that

the fields associated with those waves propagating along the water-bot-

tom interface are due to the saddle point contributions of the multi-

plies. This is true whether the sound velocity at the top of the layer

is less than or greater than that of the water colun .

However, if the sound velocity profile in the layer approaches a

constant and the layer medium becomes identically homogeneous, the phys-

ical characteristics of the interface waves become completely different

depending on the sound velocity difference at the water-bottom inter- .

fdce. Unly when co <c1 (0), do they become the classical head wave

dssociateo with a branch cut contribution[5].

It is also of some interest to show analytically that the pole-

-type singularities from the total Langer reflection coefficient become

the branch cut due to the branch point at 1/c 1 (0) as cl(z) approach-

es c (0) for all z.
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Appendix A: Accuracy of The Langer uniform asymptotic approximation
, 0

Quantitative error analysis of the Langer uniform asymptotic

approximation is discussed in this appendix. We have discussed that

E(z)G(z) vanishes asymptotically in Chapter 2. The exact expression for S

E(z) is given by

E(z) (A.1)

wh er e T Q-1/2 1/6 ....heey= Q , (A.2)

Thus E(z) may be further reduced to

E(z) 5 Q2 n-2 + 3Q' Q (A.3)
36 4 2Q

The condition for the Langer solutions to be valid is _

E(z)<< 1 (A.4)

where the denominator is given by the second term in (2.3).

Substituting (A.3) in (A.4), we obtain

Sn-2 + - 1 (A.5)

36 2Q
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khen n is very large, i .e. Wien z is away from a turning point z t so that

1 '= Q(z' dz' >> 1, 0

t

the above condition may be further reduced to

- 213Q V (A.6)

4Q 2Q

This is nothing but the error criterion for the WKBJ method[l]. (A.5)

and (A.6) are valid only Wen Q J 0 and n A 0, and Q' and Q" are not

large, i .e. when z is away from z in a slowly varying medium.

In order for the Langer solutions given by Eq. (2.7) to be valid

anywhere, we must show that\Vnever becomes zero even at the turning

point although one might expect such condition by substituting n = 0 in

Eq. (A.2). Let us assume near the turning point that

2Q az as z 0 (A.7)

wiere z t = 0 is assund for convenience and a is a constant gradient.

Then,

z( 1/2 2 /2. /= (az) =-(az) ;Q = (az)i/ 2

3a
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Hence beconies

2 1/6

which is constant at the turning point, thus E(z) vanishes.

Therefore, is non-zero anywhere.

The Langer uniform asymptotic approximation is equivalent to the

WKBJ dpproximation with an Airy function correction for depths near the

turning point. However, when the WKBJ method is applied, it is •

necessary to determine where to switch from the WKBJ solution to the

Airy function solution in order to obtain solutions across the turning

depth. The greatest advantage of L.U.A.A. is that it provides a general 0

closed form solution valid anywhere without requiring the determination

of this boundary and continuously switches one solution type to the

other.

It is also important to note that when Q2(z) is linear

everywhere, 4Iis constant and E(z) vanishes entirely, and therefore the

L.U.A.A. reduces to the exact solution of (2.1). P

References: 0
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Appendix B: The Podlfled Method of Steepest Descents for

the Sommerfela Integral with Langer Reflection Coefficients

The method of steepest descents(M.S.D.) is an expansion technique

to evaluate asymptotically an integral of the form,

I Flp) e i w(P) dp; w oo (B.1)

where F = V P1/2 Y1
n 0

with V R e-2iunp
n n

where Rn is a partial Langer reflection coefficient defined by Eq.

(2.30) and p is a layer-phase defined by Eq. (2.39).

However, F(p) given by Eq. (2.36) should be written as

F = F(p,-)

because the modified reflection coefficient Vn is a function of p and

=. The reason why we may still apply the basic method of steepest de-

scents technique is that Vn behaves as if it were a function of p

alone when its asymptotic behavior for w ow (i .e. the dependence of F

on u is very weak). Although we may treat Vn as a function of p
n

alone, it is still important to verify if V'n and V"n have the ap-
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propriate behavior as a part of the correction term N in Eq. (2.41) so

that N/w asymptotically vanishes as L approaches infinity[I]. For the

simplest example, let us consider the specularly reflected field Po
0S

and compare its correction term N to that of Lamb's problem studied by

Brekhovskikh[2]. Since both share the same phase 6, we need only con-

sider the Rayleigh plane wave reflection coefficient given by Eq. (2.31)

ana the Langer reflection coefficient in Eq. (2.29). We have al-

ready observed that R0 in Eq. (2.29) may be reduced to Eq. (2.31) when

the asymptotic approximations of the Fock functions are substituted, but

this is not the case for their derivatives. We shall examine the asymp-

totic behavior of V and V" and justify the expansion necessary

for the method of steepest descents.

First, before we consider the Langer reflection coefficient V0

( RO), i.e. the plane wave reflection coefficient for specular re-

flection, we shall review the leading order behavior of its asymptotic

approximation which identically becomes a local plane wave reflection

coefficient at the ocean bottom interface given by

Pi YO "POQO

Rr = (B.2)
PlYO + PoQo

whose first derivative with respect to p is given by '- .. 1
2 poplp Q0  YO

r PYo + POQO )  YO QO

__0
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where the subscript r indicates that this is the Rayleigh reflection

coefficien t.

Now we differentiate V0 with respect to p and obtain

2( A 2 B 2  ~~~~

S6 (A 2 ) + (B.4)

which has the leading order asymptotic behavior

2 pop1p YO o 'o)

-- + ) (B.5)

PYO + P 2

The last terni within the parenthesis is introduced in addition to the

result from Eq. (B.3). Interestingly, When the sound velocity profile

in the layer has the form l/c 2 -linear, the first and third terms ex- .

actly cancel out and Eq. (B.5) becomes

12 OOlp  QO (B.6)

0 2 ._

This could be significantly different from the value given by Eq. -

(B.3) because the terms within the parenthesis in Eq. (B.3) tend to

cancel each other Wien co and ci(O) have similar values, and the

aifference can become a fraction of the order of each term. In any case

Eq. (B.6) is still independent of and behaves well in the correction

term N.
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We shall next consider the second derivative of YO,

Vil 2 ) 2) A 2)( 2 ) V1 2( 2 ) +8(2)')

0 0A~1  (2)(B.7)

0 0~

wre(2) B(2) A(2)' 8(2)'r
weeA 0  B 0 A0 and B0 ae given by Eqs. (2.21-22), (2.51-52),

repetiel. ls (A2) an 2)"
repetiey.AlsoA0 adB 0  are given by

AU) Ap 1U 1 + Y 0 V6,1
2 ) W (1),( 2 )( V0)

0~y

CV0

+ ('Y V0  - p v) W'(1),( 2 )(v0 )] (B .8)
00 Y0 0

B PL2 S 'V' + SOv; + S H VOvO" W '' 2 (V 0)0

0 0S - O SVO2  W'' 2 (V 0) (B.9)

*Again, after substituting th e asym~ptotic approximations of the Fock

* functions in Eq. (8.7), we obtain

L0

- 2pop 1 p +0 2 ip IpQ0

0 p0 0) 1 0 YO + -0

2 2cn'(ipo yo + (1 1 i)p1Q +-y)) (8. 10)
Qo
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where there is a term which leads to the violation of the criterion

imposea for the asymptotic expansion given by Eq. (2.42). In an analo-

gous manner, one can show that asymptotically V n' is independent of

while Vn" depends on u for n > 0.

The direct cause of this problem is due to the mathematical prop-

erty of the Airy functions A which satisfy the Airy equation

2 = x A(x)

where x contains the term dependent on u. As the terms in V contain-

ing the Airy functions are differentiated twice, these quantities appear

in the asymptotic form of V without being canceled out. Thus, unfor- 0

tunately, a direct appl ication of the M. S. D. fails at the inclusion of

the second derivative of the Langer reflection coefficient.

However, we know that Vn is a very slowly varying function of p

ana it would not make much physical sense to expect a large value from

the second derivative of Vn with respect to p compared to the first

aerivative. We also know that in practice, the major source of l imit- .

ation of the M. D. S. is due to a large value of V' which is the onlyn

place where V n could be appreciably large (ex. the Langer reflection

coefficient at critical incidence). All of the above suggests that the

basic approach of the M. S. D. is still valid. We, therefore, set V"n

to zero, which is equivalent to limiting the Taylor expansion of F in

Eq. (2.41) to somewhat lower order by rewriting the truncated series as
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3/2
F(p) F(p) + F' (p )(p p 1[ +

2 '(0 PS YO

1/2-1 -2 2
V nps"2YO(2y 0  + - -7 p P)2 (B.12)

We note that F" in Eq. (2.48) is the coefficient of (p p in2 the

above expansion.
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Appendix C: Asymptotic approximation of Pock functions

Asymptotic expansions of Fock functions are derived in Uts appen-

dix as follow:

W M Ai (-v) ;i Bi (-v)

=(v/3)l 'e i~'H /3 )( (C.la b)

1/2 / )

-(2v/3irx le*( -

-1/41/2 eti(x -i/4) (C.2a,b)

M.2 dAi() GO 1dBi(v GO
-T(- v- dr-7

V 2Ti/ N 2/3() (C.3a,b) __

1/2 *1 (x -3v/4)-v(2/3rx) e

V1/4 f / 2 eti (x - /4) (C.4a b)

~kI~e v= x 2/3
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The regions of validity of the argument x are

-< arg x < 2, for the first kind, (1)

-w< arg x < wfor the second kind, (2)

Re fer en ce:

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
Nati . bur. Stand. Appi. Path. Ser. 55,Wa igton, 0. C., 1964, Eqs.
(10.4.23), (10.4.24), (10.4.28), (1T4.29), (9.2.3) and (9.2.4).-
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Appendix D: Approximation of Hamilton's Profile

Sound velocity profiling in ocean bottom sediments from sonobuoy

oata is given in terms of the one-way travel time t of a pulse signal

penetrating through the bottom structures. It has been found from

measurements that the depth z may be expressed by the third order

polynomial in t as[l]

z = At + Bt2 /2 Ct3 /3. (D.1)

by differentiating both sides, we obtain sound velocity v in t given by

t 2 "

v dz/at A + Bt + (D.2)

Unl ike the case where z is a quadratic function of t[2], it is not

possible to eliminate t from the above equations to obtain v as a

function of z. Hamilton does provide an expression for sound velocity

ds a function of depth which is the result of a regression of points

generateo by the above equations for many values of t and is expressed

by third oroer polynomials[l]. However, it is not in a form for which

the phase integral and ray equations(travel time, intensity, etc. ) can

be computed analytically.

In this appendix we shall introduce an approximate method to

obtain a simple analytic depth dependent expression for the sound

velocity from which these analytical expressions can be obtained
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easilyL3]. The results of this simple velocity function are accurate

enough to model ocean bottom sound velocity structure based on the mea-

s uremen ts.

We first propose the following quadratic function in z versus

souna velocity V to the third power:

V3 = O +z+ 'z 2  (D.3)

The above expression for V has been chosen because the shape of V

is similar to that of Hamilton's profile. We have also assumed 3 un-

known coefficients, a, B andy, to be consistent with the 3 parameters

given in (D.1) ano (D.2) though it will be shown later that the last
L4

term on the right hand side may be dropped without sacrificing much ac-

curacy. As a result, the ray equations and the phase integral can be

expresseu in simple analytic forms as given in Sec. 3.1. -,-

After we substitute z given by (D.1) in (D.3) and retain terms

through t2 , (L).3) becomes

V3 Z + B At + (B 8/2 + y A2 )t2 . (D.4)

Since A, B ano C are on the order of unity~l] and t is typically less

than 1 sec, and a, B and y are also on the order of unity (which will be

verified shortly), V given by (D.4) is a good approximation to Eq. (D.3).

We next cube both sides of (D.2) and compare the coefficients of

each oroer of t, and finally obtain

1
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a = A3

a = 3AB

= 3(C + B /2A).

From the example given by Hamilton of terrigenous sediments whose

instantaneous velocity in kni'sec is given by the form of (D.2) with A =

1.511,13 = 1.041 andC = -O.372(Table III of Ref. 1), we get = 3.450,

= 8.989, = 1 .630. From these nunbers it can be easily shown that

the higher order terms of t which have been neglected in (D.4) are in

fact much smaller than the rest.

Furthermore, since z is typically less than I km, the z2 -term

way be dropped in (D.3) and we finally obtain

3 B;

V a + (D.5)

Wien z is .1 km, V computed from (D.5) has less than 0.2% error

comparea to Hamilton's formula, and even at z = 1 km where the maximum

error is expected, it has less than 1% error. Hamilton's profile and __

(D.5) are plotted in Fig. D.1.
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